200 research outputs found

    Electrical characteristics of spark generators for automotive ignition

    Get PDF
    This paper reports the results of an extensive program of measurements on 11 ignition systems differing widely in type. The results serve primarily to give representative data on the electric and magnetic constants of such systems, and on the secondary voltage produced by them under various conditions of speed, timing, shunting resistance, etc. They also serve to confirm certain of the theoretical formulas which have been proposed to connect the performance of such systems with their electrical constants, and to indicate the extent to which certain simplified model circuits duplicate the performance of the actual apparatus

    Going to the exclusive show : exhibition strategies and moviegoing memories of Disneys animated feature films in Ghent (1937-1982)

    Get PDF
    This is a case study of the exploitation and experience of Disney's animated feature films from the 1930s to the 1980s in Ghent (Belgium). It is a historical study of programming practices and financial strategies which constructed childhood memories on watching Disney. The study is a contribution to a historical understanding of the implications of global distribution of film as cultural products and the counter pull of localism. Using a multi-method approach, the argument is made that the scarce screenings were strategically programmed to uplift the moviegoing experience into something out of the ordinary in everyday life. Programming and revenue data characterize the screenings as exclusive and generating high intakes. Consequently, the remembered screenings did not exhale an easy accessible social status nor an image of pervasiveness of popular childhood film, contradictory to conventional accounts of Disney's ubiquity in popular culture

    The Structure of C2H4 Clusters from Theoretical Interaction Potentials and Vibrational Predissociation Data

    Get PDF
    Optimized geometries and binding energies are calculated for ethene (ethylene) dimers, trimers, and tetramers based on a pairwise additive dimer potential. From these results intermolecular frequencies and relative abundancies (catchment areas) of the different isomers are obtained and compared with the results of accurate measurements of the photodissociation upon absorption of one photon of a CO2 laser in the region of the ν7 monomer absorption band at 949 cm-1. The clusters are size selected in a scattering experiment and show for a cluster size from n=2 to n=6 a frequency maximum shifted by 3 cm-1 to the blue compared with the monomer. The result is explained by the predominance of chains and chain-like structures of the clusters in the photodissociation process. The chains consist of cross-like dimer sub-units

    Downregulation of Mcl-1 has anti-inflammatory pro-resolution effects and enhances bacterial clearance from the lung

    Get PDF
    Phagocytes not only coordinate acute inflammation and host defense at mucosal sites, but also contribute to tissue damage. Respiratory infection causes a globally significant disease burden and frequently progresses to acute respiratory distress syndrome, a devastating inflammatory condition characterized by neutrophil recruitment and accumulation of protein-rich edema fluid causing impaired lung function. We hypothesized that targeting the intracellular protein myeloid cell leukemia 1 (Mcl-1) by a cyclin-dependent kinase inhibitor (AT7519) or a flavone (wogonin) would accelerate neutrophil apoptosis and resolution of established inflammation, but without detriment to bacterial clearance. Mcl-1 loss induced human neutrophil apoptosis, but did not induce macrophage apoptosis nor impair phagocytosis of apoptotic neutrophils. Neutrophil-dominant inflammation was modelled in mice by either endotoxin or bacteria (Escherichia coli). Downregulating inflammatory cell Mcl-1 had anti-inflammatory, pro-resolution effects, shortening the resolution interval (R(i)) from 19 to 7 h and improved organ dysfunction with enhanced alveolar–capillary barrier integrity. Conversely, attenuating drug-induced Mcl-1 downregulation inhibited neutrophil apoptosis and delayed resolution of endotoxin-mediated lung inflammation. Importantly, manipulating lung inflammatory cell Mcl-1 also accelerated resolution of bacterial infection (R(i); 50 to 16 h) concurrent with enhanced bacterial clearance. Therefore, manipulating inflammatory cell Mcl-1 accelerates inflammation resolution without detriment to host defense against bacteria, and represents a target for treating infection-associated inflammation

    Fludarabine modulates composition and function of the T cell pool in patients with chronic lymphocytic leukaemia

    Get PDF
    The combination of cytotoxic treatment with strategies for immune activation represents an attractive strategy for tumour therapy. Following reduction of high tumour burden by effective cytotoxic agents, two major immune-stimulating approaches are being pursued. First, innate immunity can be activated by monoclonal antibodies triggering antibody-dependent cellular cytotoxicity. Second, tumour-specific T cell responses can be generated by immunization of patients with peptides derived from tumour antigens and infused in soluble form or loaded onto dendritic cells. The choice of cytotoxic agents for such combinatory regimens is crucial since most substances such as fludarabine are considered immunosuppressive while others such as cyclophosphamide can have immunostimulatory activity. We tested in this study whether fludarabine and/or cyclophosphamide, which represent a very effective treatment regimen for chronic lymphocytic leukaemia, would interfere with a therapeutic strategy of T cell activation. Analysis of peripheral blood samples from patients prior and during fludarabine/cyclophosphamide therapy revealed rapid and sustained reduction of tumour cells but also of CD4+ and CD8+ T cells. This correlated with a significant cytotoxic activity of fludarabine/cyclophosphamide on T cells in vitro. Unexpectedly, T cells surviving fludarabine/cyclophosphamide treatment in vitro had a more mature phenotype, while fludarabine-treated T cells were significantly more responsive to mitogenic stimulation than their untreated counterparts and showed a shift towards TH1 cytokine secretion. In conclusion, fludarabine/cyclophosphamide therapy though inducing significant and relevant T cell depletion seems to generate a micromilieu suitable for subsequent T cell activation

    Cathepsin L Inhibition Prevents Murine Autoimmune Diabetes via Suppression of CD8+ T Cell Activity

    Get PDF
    Background: Type 1 diabetes (T1D) is an autoimmune disease resulting from defects in central and peripheral tolerance and characterized by T cell-mediated destruction of islet b cells. To determine whether specific lysosomal proteases might influence the outcome of a T cell–mediated autoimmune response, we examined the functional significance of cathepsin inhibition on autoimmune T1D-prone non-obese diabetic (NOD) mice. Methods and Findings: Here it was found that specific inhibition of cathepsin L affords strong protection from cyclophosphamide (CY)-induced insulitis and diabetes of NOD mice at the advanced stage of CD8 + T cell infiltration via inhibiting granzyme activity. It was discovered that cathepsin L inhibition prevents cytotoxic activity of CD8 + T cells in the pancreatic islets through controlling dipeptidyl peptidase I activity. Moreover, the gene targeting for cathepsin L with application of in vivo siRNA administration successfully prevented CY-induced diabetes of NOD mice. Finally, cathepsin L mRNA expression of peripheral CD8 + T cells from NOD mice developing spontaneous T1D was significantly increased compared with that from control mice. Conclusions: Our results identified a novel function of cathepsin L as an enzyme whose activity is essential for the progression of CD8 + T cell-mediated autoimmune diabetes, and inhibition of cathepsin L as a powerful therapeutic strateg

    IL-2 Mediates CD4+ T Cell Help in the Breakdown of Memory-Like CD8+ T Cell Tolerance under Lymphopenic Conditions

    Get PDF
    Background: Lymphopenia results in the proliferation and differentiation of naïve T cells into memory-like cells in the apparent absence of antigenic stimulation. This response, at least in part due to a greater availability of cytokines, is thought to promote anti-self responses. Although potentially autoreactive memory-like CD8 + T cells generated in a lymphopenic environment are subject to the mechanisms of peripheral tolerance, they can induce autoimmunity in the presence of antigen-specific memory-like CD4 + T helper cells. Methodology/Principal Findings: Here, we studied the mechanisms underlying CD4 help under lymphopenic conditions in transgenic mice expressing a model antigen in the beta cells of the pancreas. Surprisingly, we found that the self-reactivity mediated by the cooperation of memory-like CD8 + and CD4 + T cells was not abrogated by CD40L blockade. In contrast, treatment with anti-IL-2 antibodies inhibited the onset of autoimmunity. IL-2 neutralization prevented the CD4-mediated differentiation of memory-like CD8 + T cells into pathogenic effectors in response to self-antigen cross-presentation. Furthermore, in the absence of helper cells, induction of IL-2 signaling by an IL-2 immune complex was sufficient to promote memory-like CD8 + T cell self-reactivity. Conclusions/Significance: IL-2 mediates the cooperation of memory-like CD4 + and CD8 + T cells in the breakdown of crosstolerance, resulting in effector cytotoxic T lymphocyte differentiation and the induction of autoimmune disease

    Synthetic Nanoparticles for Vaccines and Immunotherapy

    Get PDF
    The immune system plays a critical role in our health. No other component of human physiology plays a decisive role in as diverse an array of maladies, from deadly diseases with which we are all familiar to equally terrible esoteric conditions: HIV, malaria, pneumococcal and influenza infections; cancer; atherosclerosis; autoimmune diseases such as lupus, diabetes, and multiple sclerosis. The importance of understanding the function of the immune system and learning how to modulate immunity to protect against or treat disease thus cannot be overstated. Fortunately, we are entering an exciting era where the science of immunology is defining pathways for the rational manipulation of the immune system at the cellular and molecular level, and this understanding is leading to dramatic advances in the clinic that are transforming the future of medicine.1,2 These initial advances are being made primarily through biologic drugs– recombinant proteins (especially antibodies) or patient-derived cell therapies– but exciting data from preclinical studies suggest that a marriage of approaches based in biotechnology with the materials science and chemistry of nanomaterials, especially nanoparticles, could enable more effective and safer immune engineering strategies. This review will examine these nanoparticle-based strategies to immune modulation in detail, and discuss the promise and outstanding challenges facing the field of immune engineering from a chemical biology/materials engineering perspectiveNational Institutes of Health (U.S.) (Grants AI111860, CA174795, CA172164, AI091693, and AI095109)United States. Department of Defense (W911NF-13-D-0001 and Awards W911NF-07-D-0004

    Induction of Eosinophil Apoptosis by the Cyclin-Dependent Kinase Inhibitor AT7519 Promotes the Resolution of Eosinophil-Dominant Allergic Inflammation

    Get PDF
    Eosinophils not only defend the body against parasitic infection but are also involved in pathological inflammatory allergic diseases such as asthma, allergic rhinitis and contact dermatitis. Clearance of apoptotic eosinophils by macrophages is a key process responsible for driving the resolution of eosinophilic inflammation and can be defective in allergic diseases. However, enhanced resolution of eosinophilic inflammation by deliberate induction of eosinophil apoptosis using pharmacological agents has not been previously demonstrated. Here we investigated the effect of a novel cyclin-dependent kinase inhibitor drug, AT7519, on human and mouse eosinophil apoptosis and examined whether it could enhance the resolution of a murine model of eosinophil-dominant inflammation in vivo.Eosinophils from blood of healthy donors were treated with AT7519 and apoptosis assessed morphologically and by flow-cytometric detection of annexin-V/propidium iodide staining. AT7519 induced eosinophil apoptosis in a concentration dependent manner. Therapeutic administration of AT7519 in eosinophil-dominant allergic inflammation was investigated using an established ovalbumin-sensitised mouse model of allergic pleurisy. Following ovalbumin challenge AT7519 was administered systemically at the peak of pleural inflammation and inflammatory cell infiltrate, apoptosis and evidence of macrophage phagocytosis of apoptotic eosinophils assessed at appropriate time points. Administration of AT7519 dramatically enhanced the resolution of allergic pleurisy via direct induction of eosinophil apoptosis without detriment to macrophage clearance of these cells. This enhanced resolution of inflammation was shown to be caspase-dependent as the effects of AT7519 were reduced by treatment with a broad spectrum caspase inhibitor (z-vad-fmk).Our data show that AT7519 induces human eosinophil apoptosis and enhances the resolution of a murine model of allergic pleurisy by inducing caspase-dependent eosinophil apoptosis and enhancing macrophage ingestion of apoptotic eosinophils. These findings demonstrate the utility of cyclin-dependent kinase inhibitors such as AT7519 as potential therapeutic agents for the treatment of eosinophil dominant allergic disorders
    • …
    corecore