630 research outputs found

    Ab initio study on the effects of transition metal doping of Mg2NiH4

    Get PDF
    Mg2NiH4 is a promising hydrogen storage material with fast (de)hydrogenation kinetics. Its hydrogen desorption enthalpy, however, is too large for practical applications. In this paper we study the effects of transition metal doping by first-principles density functional theory calculations. We show that the hydrogen desorption enthalpy can be reduced by ~0.1 eV/H2 if one in eight Ni atoms is replaced by Cu or Fe. Replacing Ni by Co atoms, however, increases the hydrogen desorption enthalpy. We study the thermodynamic stability of the dopants in the hydrogenated and dehydrogenated phases. Doping with Co or Cu leads to marginally stable compounds, whereas doping with Fe leads to an unstable compound. The optical response of Mg2NiH4 is also substantially affected by doping. The optical gap in Mg2NiH4 is ~1.7 eV. Doping with Co, Fe or Cu leads to impurity bands that reduce the optical gap by up to 0.5 eV.Comment: 8 pages, 4 figure

    Band gaps in pseudopotential self-consistent GW calculations

    Full text link
    For materials which are incorrectly predicted by density functional theory to be metallic, an iterative procedure must be adopted in order to perform GW calculations. In this paper we test two iterative schemes based on the quasi-particle and pseudopotential approximations for a number of inorganic semiconductors whose electronic structures are well known from experiment. Iterating just the quasi-particle energies yields a systematic, but modest overestimate of the band gaps, confirming conclusions drawn earlier for CaB_6 and YH_3. Iterating the quasi-particle wave functions as well gives rise to an imbalance between the Hartree and Fock potentials and results in bandgaps in far poorer agreement with experiment.Comment: 5 pages, 2 figures, 2 table

    Work functions of self-assembled monolayers on metal surfaces

    Get PDF
    Using first-principles calculations we show that the work function of noble metals can be decreased or increased by up to 2 eV upon the adsorption of self-assembled monolayers of organic molecules. We identify the contributions to these changes for several (fluorinated) thiolate molecules adsorbed on Ag(111), Au(111) and Pt(111) surfaces. The work function of the clean metal surfaces increases in this order, but adsorption of the monolayers reverses the order completely. Bonds between the thiolate molecules and the metal surfaces generate an interface dipole, whose size is a function of the metal, but it is relatively independent of the molecules. The molecular and bond dipoles can then be added to determine the overall work function.Comment: 5 pages, 2 figure

    Structural studies of phosphorus induced dimers on Si(001)

    Full text link
    Renewed focus on the P-Si system due to its potential application in quantum computing and self-directed growth of molecular wires, has led us to study structural changes induced by P upon placement on Si(001)-p(2×1)p(2\times 1). Using first-principles density functional theory (DFT) based pseudopotential method, we have performed calculations for P-Si(001) system, starting from an isolated P atom on the surface, and systematically increasing the coverage up to a full monolayer. An isolated P atom can favorably be placed on an {\bf M} site between two atoms of adjacent Si dimers belonging to the same Si dimer row. But being incorporated in the surface is even more energetically beneficial due to the participation of the {\bf M} site as a receptor for the ejected Si. Our calculations show that up to 1/8 monolayer coverage, hetero-dimer structure resulting from replacement of surface Si atoms with P is energetically favorable. Recently observed zig-zag features in STM are found to be consistent with this replacement process. As coverage increases, the hetero-dimers give way to P-P ortho-dimers on the Si dimer rows. This behavior is similar to that of Si-Si d-dimers but are to be contrasted with the Al-Al dimers, which are found between adjacent Si dimers rows and in a para-dimer arrangement. Unlike Al-Si system P-Si does not show any para to ortho transition. For both systems, the surface reconstruction is lifted at about one monolayer coverage. These calculations help us in understanding the experimental data obtained using scanning tunneling microscope.Comment: To appear in PR

    Ab initio study of magnesium alanate, Mg(AlH4)2

    Get PDF
    Magnesium alanate Mg(AlH4)2 has recently raised interest as a potential material for hydrogen storage. We apply ab initio calculations to characterize structural, electronic and energetic properties of Mg(AlH4)2. Density functional theory calculations within the generalized gradient approximation (GGA) are used to optimize the geometry and obtain the electronic structure. The latter is also studied by quasi-particle calculations at the GW level. Mg(AlH4)2 is a large band gap insulator with a fundamental band gap of 6.5 eV. The hydrogen atoms are bonded in AlH4 complexes, whose states dominate both the valence and the conduction bands. On the basis of total energies, the formation enthalpy of Mg(AlH4)2 with respect to bulk magnesium, bulk aluminum and hydrogen gas is 0.17 eV/H2 (at T = 0). Including corrections due to the zero point vibrations of the hydrogen atoms this number decreases to 0.10 eV/H2. The enthalpy of the dehydrogenation reaction Mg(AlH4)2 -> MgH2 +2Al+3H2(g) is close to zero, which impairs the potential usefulness of magnesium alanate as a hydrogen storage material.Comment: 5 pages, 3 figure

    Tunable Hydrogen Storage in Magnesium - Transition Metal Compounds

    Get PDF
    Magnesium dihydride (\mgh) stores 7.7 weight % hydrogen, but it suffers from a high thermodynamic stability and slow (de)hydrogenation kinetics. Alloying Mg with lightweight transition metals (TM = Sc, Ti, V, Cr) aims at improving the thermodynamic and kinetic properties. We study the structure and stability of Mgx_xTM1−x_{1-x}H2_2 compounds, x=[0x=[0-1], by first-principles calculations at the level of density functional theory. We find that the experimentally observed sharp decrease in hydrogenation rates for x≳0.8x\gtrsim0.8 correlates with a phase transition of Mgx_xTM1−x_{1-x}H2_2 from a fluorite to a rutile phase. The stability of these compounds decreases along the series Sc, Ti, V, Cr. Varying the transition metal (TM) and the composition xx, the formation enthalpy of Mgx_xTM1−x_{1-x}H2_2 can be tuned over the substantial range 0-2 eV/f.u. Assuming however that the alloy Mgx_xTM1−x_{1-x} does not decompose upon dehydrogenation, the enthalpy associated with reversible hydrogenation of compounds with a high magnesium content (x=0.75x=0.75) is close to that of pure Mg.Comment: 8 pages, 5 figure

    Surface Dipoles and Work Functions of Alkylthiolates and Fluorinated Alkylthiolates on Au(111)

    Get PDF
    We study the dipole formation at the surface formed by -CH3 and -CF3 terminated shortchain alkyl-thiolate monolayers on Au(111). In particular, we monitor the change in work function upon chemisorption using density functional theory calculations. We separate the surface dipole into two contributions, resulting from the gold-adsorbate interaction and the intrinsic dipole of the adsorbate layer, respectively. The two contributions turn out to be approximately additive. Adsorbate dipoles are defined by calculating dipole densities of free-standing molecular monolayers. The gold-adsorbate interaction is to a good degree determined by the Au-S bond only. This bond is nearly apolar and its contribution to the surface dipole is relatively small. The surface dipole of the self-assembled monolayer is then dominated by the intrinsic dipole of the thiolate molecules. Alkyl-thiolates increase the work function of Au(111), whereas fluorinated alkyl-thiolates decrease it.Comment: 24 pages, 5 figures, 4 table

    First-principles study of the interaction and charge transfer between graphene and metals

    Get PDF
    Measuring the transport of electrons through a graphene sheet necessarily involves contacting it with metal electrodes. We study the adsorption of graphene on metal substrates using first-principles calculations at the level of density functional theory. The bonding of graphene to Al, Ag, Cu, Au and Pt(111) surfaces is so weak that its unique "ultrarelativistic" electronic structure is preserved. The interaction does, however, lead to a charge transfer that shifts the Fermi level by up to 0.5 eV with respect to the conical points. The crossover from p-type to n-type doping occurs for a metal with a work function ~5.4 eV, a value much larger than the work function of free-standing graphene, 4.5 eV. We develop a simple analytical model that describes the Fermi level shift in graphene in terms of the metal substrate work function. Graphene interacts with and binds more strongly to Co, Ni, Pd and Ti. This chemisorption involves hybridization between graphene pzp_z-states and metal d-states that opens a band gap in graphene. The graphene work function is as a result reduced considerably. In a current-in-plane device geometry this should lead to n-type doping of graphene.Comment: 12 pages, 9 figure
    • …
    corecore