7 research outputs found
The development of a natural plankton population in an outdoor tank with nutrient-poor sea water. I. Phytoplankton succession
Due to complex hydrodynamic and biological inhomogeneities, the phytoplankton species succession cannot be satisfactorily observed, apart from the seasonal blooms which occur in temperate waters. Large flexible plastic tanks have proved to be useful for such observations. In 1972, for 28 days, a phytoplankton succession in nutrient-poor water in the outer harbor of Helgoland was observed in a flexible plastic tank (3 m3). During this period, 3 phytoplankton biomass maxima were formed with many significant correlations. In the first 7 days the ammonia concentration decreased from over 6 to 2 μ mol 1-1 for 14 days. The nitrate concentration remained in the range of 3-6 μ mol 1-1 and then fell abruptly to 0-2 μ mol 1-1. The phosphate concentration was about 0.1 μ mol 1-1. Lauderia borealis dominated the first period, and its increase was significantly correlated with the decrease in ammonia. The diatom was succeeded by two dinoflagellates, Dinophysis acuminata and Prorocentrum micans. The last period of the experiment was characterized by a stronger development of Rhizosolenia species. The rapid recovery of the crop in the nutrient-poor water points to intensive remineralization processes. The irregular occurrence of ammonia near the surface was correlated with the appearance of Noctiluca miliaris at this depth. It is expected that repetitions of this type of experiment will permit further explanations of statistical correlations which are not yet clear. As a first step, in order to test hypotheses, a correlation analysis was employed to eliminate the statistically non-significant correlations. © 1977 Springer-Verlag
Analysis of an N-terminal deletion in subunit a of the Escherichia coli ATP synthase
Subunit a is a membrane-bound stator subunit of the ATP synthase and is essential for proton translocation. The N-terminus of subunit a in E. coli is localized to the periplasm, and contains a sequence motif that is conserved among some bacteria. Previous work has identified mutations in this region that impair enzyme activity. Here, an internal deletion was constructed in subunit a in which residues 6-20 were replaced by a single lysine residue, and this mutant was unable to grow on succinate minimal medium. Membrane vesicles prepared from this mutant lacked ATP synthesis and ATP-driven proton translocation, even though immunoblots showed a significant level of subunit a. Similar results were obtained after purification and reconstitution of the mutant ATP synthase into liposomes. The location of subunit a with respect to its neighboring subunits b and c was probed by introducing cysteine substitutions that were known to promote cross-linking: a_L207C + c_I55C, a_L121C + b_N4C, and a_T107C + b_V18C. The last pair was unable to form cross-links in the background of the deletion mutant. The results indicate that loss of the N-terminal region of subunit a does not generally disrupt its structure, but does alter interactions with subunit b