13,081 research outputs found

    On the exactness of the Semi-Classical Approximation for Non-Relativistic One Dimensional Propagators

    Get PDF
    For one dimensional non-relativistic quantum mechanical problems, we investigate the conditions for all the position dependence of the propagator to be in its phase, that is, the semi-classical approximation to be exact. For velocity independent potentials we find that: (i) the potential must be quadratic in space, but can have arbitrary time dependence. (ii) the phase may be made proportional to the classical action, and the magnitude (``fluctuation factor'') can also be found from the classical solution. (iii) for the driven harmonic oscillator the fluctuation factor is independent of the driving term.Comment: 7 pages, latex, no figures, published in journal of physics

    System data communication structures for active-control transport aircraft, volume 2

    Get PDF
    The application of communication structures to advanced transport aircraft are addressed. First, a set of avionic functional requirements is established, and a baseline set of avionics equipment is defined that will meet the requirements. Three alternative configurations for this equipment are then identified that represent the evolution toward more dispersed systems. Candidate communication structures are proposed for each system configuration, and these are compared using trade off analyses; these analyses emphasize reliability but also address complexity. Multiplex buses are recognized as the likely near term choice with mesh networks being desirable for advanced, highly dispersed systems

    System data communication structures for active-control transport aircraft, volume 1

    Get PDF
    Candidate data communication techniques are identified, including dedicated links, local buses, broadcast buses, multiplex buses, and mesh networks. The design methodology for mesh networks is then discussed, including network topology and node architecture. Several concepts of power distribution are reviewed, including current limiting and mesh networks for power. The technology issues of packaging, transmission media, and lightning are addressed, and, finally, the analysis tools developed to aid in the communication design process are described. There are special tools to analyze the reliability and connectivity of networks and more general reliability analysis tools for all types of systems

    Uncertainty of Exploitation Estimates Made from Tag Returns

    Get PDF

    Synthesis, Structure and Properties of Tetragonal Sr2M3As2O2 (M3 = Mn3, Mn2Cu and MnZn2) Compounds Containing Alternating CuO2-Type and FeAs-Type Layers

    Full text link
    Polycrystalline samples of Sr2Mn2CuAs2O2, Sr2Mn3As2O2, and Sr2Zn2MnAs2O2 were synthesized. Their temperature- and applied magnetic field-dependent structural, transport, thermal, and magnetic properties were characterized by means of x-ray and neutron diffraction, electrical resistivity rho, heat capacity, magnetization and magnetic susceptibility measurements. These compounds have a body-centered-tetragonal crystal structure (space group I4/mmm) that consists of MO2 (M = Zn and/or Mn) oxide layers similar to the CuO2 layers in high superconducting transition temperature Tc cuprate superconductors, and intermetallic MAs (M = Cu and/or Mn) layers similar to the FeAs layers in high-Tc pnictides. These two types of layers alternate along the crystallographic c-axis and are separated by Sr atoms. The site occupancies of Mn, Cu and Zn were studied using Rietveld refinements of x-ray and neutron powder diffraction data. The temperature dependences of rho suggest metallic character for Sr2Mn2CuAs2O2 and semiconducting character for Sr2Mn3As2O2 and Sr2Zn2MnAs2O2. Sr2Mn2CuAs2O2 is inferred to be a ferrimagnet with a Curie temperature TC = 95(1) K. Remarkably, we find that the magnetic ground state structure changes from a G-type antiferromagnetic structure in Sr2Mn3As2O2 to an A-type ferrimagnetic structure in Sr2Mn2CuAs2O2 in which the Mn ions in each layer are ferromagnetically aligned, but are antiferromagnetically aligned between layers.Comment: 18 pages, 16 figures, 6 tables; submitted to Phys. Rev.

    Selection for inpatient rehabilitation after severe stroke: What factors influence rehabilitation assessor decision making?

    Get PDF
    Objectives: This study aimed to identify factors that assessors considered important in decision-making regarding suitability for inpatient rehabilitation after acute severe stroke.Design: Multi-site prospective observational cohort study. Subjects: Consecutive acute, severe stroke patients and their assessors for inpatient rehabilitation. Methods: Rehabilitation assessors completed a questionnaire, rating the importance (10 point visual analogue scale) and direction (positive, negative or neutral) of 15 patient related and 2 organisational items potentially affecting their decision regarding patients’ acceptance to rehabilitation. Results: Of the 75 patients referred to rehabilitation and included in this study 61 (81.3%) were accepted for inpatient rehabilitation. The items considered to be most important in the decision to accept the patient for rehabilitation were pre-morbid cognition, pre-morbid mobility and pre-morbid communication. For those not accepted the most important items were current mobility, social support and current cognition. Factor analysis revealed 3 underlying factors, interpreted as post-stroke status, pre-morbid status, and social attributes, accounting for 61.8% of the total variance. All were independently associated with acceptance for rehabilitation (p < 0.05). Conclusions: This study highlights the importance of pre-morbid function and social factors in addition to post-stroke function in the decision making process for acceptance to rehabilitation following severe stroke. Future models for selection for rehabilitation should consider inclusion of these factors

    Making Gestural Interaction Accessible to Visually Impaired People

    Get PDF
    International audienceAs touch screens become widely spread, making them more accessible to visually impaired people is an important task. Touch displays possess a poor accessibility for visually impaired people. One possibility to make them more accessible without sight is through gestural interaction. Yet, there are still few studies on using gestural interaction for visually impaired people. In this paper we present a comprehensive summary of existing projects investigating accessible gestural interaction. We also highlight the limits of current approaches and propose future working directions. Then, we present the design of an interactive map prototype that includes both a raised-line map overlay and gestural interaction for accessing different types of information (e.g., opening hours, distances). Preliminary results of our project show that basic gestural interaction techniques can be successfully used in interactive maps for visually impaired people

    Technical note: Creating a four‐dimensional model of the liver using finite element analysis

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134997/1/mp5055.pd
    • 

    corecore