488 research outputs found

    Proteasomal degradation of the histone acetyl transferase p300 contributes to beta-cell injury in a diabetes environment

    Get PDF
    In type 2 diabetes, amyloid oligomers, chronic hyperglycemia, lipotoxicity, and pro-inflammatory cytokines are detrimental to beta-cells, causing apoptosis and impaired insulin secretion. The histone acetyl transferase p300, involved in remodeling of chromatin structure by epigenetic mechanisms, is a key ubiquitous activator of the transcriptional machinery. In this study, we report that loss of p300 acetyl transferase activity and expression leads to beta-cell apoptosis, and most importantly, that stress situations known to be associated with diabetes alter p300 levels and functional integrity. We found that proteasomal degradation is the mechanism subserving p300 loss in beta-cells exposed to hyperglycemia or pro-inflammatory cytokines. We also report that melatonin, a hormone produced in the pineal gland and known to play key roles in beta-cell health, preserves p300 levels altered by these toxic conditions. Collectively, these data imply an important role for p300 in the pathophysiology of diabetes

    Deciphering neuronal deficit and protein profile changes in human brain organoids from patients with creatine transporter deficiency

    Get PDF
    Creatine transporter deficiency (CTD) is an X-linked disease caused by mutations in the SLC6A8 gene. The impaired creatine uptake in the brain results in intellectual disability, behavioral disorders, language delay, and seizures. In this work, we generated human brain organoids from induced pluripotent stem cells of healthy subjects and CTD patients. Brain organoids from CTD donors had reduced creatine uptake compared with those from healthy donors. The expression of neural progenitor cell markers SOX2 and PAX6 was reduced in CTD-derived organoids, while GSK3β, a key regulator of neurogenesis, was up-regulated. Shotgun proteomics combined with integrative bioinformatic and statistical analysis identified changes in the abundance of proteins associated with intellectual disability, epilepsy, and autism. Re-establishment of the expression of a functional SLC6A8 in CTD-derived organoids restored creatine uptake and normalized the expression of SOX2, GSK3β, and other key proteins associated with clinical features of CTD patients. Our brain organoid model opens new avenues for further characterizing the CTD pathophysiology and supports the concept that reinstating creatine levels in patients with CTD could result in therapeutic efficacy

    Acute interaction between hydrocortisone and insulin alters the plasma metabolome in humans

    Get PDF
    With the aim of identifying biomarkers of glucocorticoid action and their relationship with biomarkers of insulin action, metabolomic profiling was carried out in plasma samples from twenty healthy men who were administered either a low or medium dose insulin infusion (n = 10 each group). In addition, all subjects were given metyrapone (to inhibit adrenal cortisol secretion) +/-hydrocortisone (HC) in a randomised crossover design to produce low, medium and high glucocorticoid levels. The clearest effects of insulin were to reduce plasma levels of the branched chain amino acids (BCAs) leucine/isoleucine and their deaminated metabolites, and lowered free fatty acids and acylcarnitines. The highest dose of hydrocortisone increased plasma BCAs in both insulin groups but increased free fatty acids only in the high insulin group, however hydrocortisone did not affect the levels of acyl carnitines in either group. The clearest interaction between HC and insulin was that hydrocortisone produced an elevation in levels of BCAs and their metabolites which were lowered by insulin. The direct modulation of BCAs by glucocorticoids and insulin may provide the basis for improved in vivo monitoring of glucocorticoid and insulin action

    The evolution of tooth wear indices

    Get PDF
    Tooth wear—attrition, erosion and abrasion—is perceived internationally as an ever-increasing problem. Clinical and epidemiological studies, however, are difficult to interpret and compare due to differences in terminology and the large number of indices that have been developed for diagnosing, grading and monitoring dental hard tissue loss. These indices have been designed to identify increasing severity and are usually numerical. Some record lesions on an aetiological basis (e.g. erosion indices), others record lesions irrespective of aetiology (tooth wear indices); none have universal acceptance, complicating the evaluation of the true increase in prevalence reported. This article considers the ideal requirements for an erosion index. It reviews the literature to consider how current indices have evolved and discusses if these indices meet the clinical and research needs of the dental profession

    Functional Hemispheric (A)symmetries in the Aged Brain-Relevance for Working Memory

    Get PDF
    Functional hemispheric asymmetries have been described in different cognitive processes, such as decision-making and motivation. Variations in the pattern of left/right activity have been associated with normal brain functioning, and with neuropsychiatric diseases. Such asymmetries in brain activity evolve throughout life and are thought to decrease with aging, but clear associations with cognitive function have never been established. Herein, we assessed functional laterality during a working memory task (N-Back) in a healthy aging cohort (over 50 years old) and associated these asymmetries with performance in the test. Activity of lobule VI of the cerebellar hemisphere and angular gyrus was found to be lateralized to the right hemisphere, while the precentral gyrus presented left > right activation during this task. Interestingly, 1-Back accuracy was positively correlated with left > right superior parietal lobule activation, which was mostly due to the influence of the left hemisphere. In conclusion, although regions were mostly symmetrically activated during the N-Back task, performance in working memory in aged individuals seems to benefit from lateralized involvement of the superior parietal lobule.NORTE-01-0145-FEDER-000013, supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER), and was funded by the European Commission (FP7) “SwitchBox—Maintaining health in old age through homeostasis” (Seventh Framework Programme; Contract HEALTH-F2-2010-259772), by FEDER through the Competitiveness Factors Operational Programme (COMPETE) and by National Funds, through the Foundation for Science and Technology (FCT) under the scope of the project POCI-01-0145-FEDER-007038, by the Fundação Calouste Gulbenkian (Portugal; Contract Grant No: P-139977; project “TEMPO—Better mental health during ageing based on temporal prediction of individual brain ageing trajectories”) and by “PANINI—Physical Activity and Nutrition Influences In Ageing” (European Commission (Horizon 2020), Contract GA 675003); Fundação para a Ciência e a Tecnologia (FCT) (Grant Nos. SFRH/BD/52291/2013 to ME and PD/BD/106050/2015 to CP-N via Inter-University Doctoral Programme in Ageing and Chronic Disease (PhDOC), SFRH/BPD/80118/2011 to HL-A and SFRH/BD/90078/2012 to TCC); and FCT/MEC and ON.2–ONOVONORTE—North Portugal Regional Operational Programme 2007/2013, of the National Strategic Reference Framework (NSRF) 2007/2013, through FEDER (project FCTANR/NEU-OSD/0258/2012 to RM)info:eu-repo/semantics/publishedVersio
    corecore