4 research outputs found

    Mre11 exonuclease activity removes the chain-terminating nucleoside analog gemcitabine from the nascent strand during DNA replication

    Get PDF
    The Mre11 nuclease is involved in early responses to DNA damage, often mediated by its role in DNA end processing. MRE11 mutations and aberrant expression are associated with carcinogenesis and cancer treatment outcomes. While, in recent years, progress has been made in understanding the role of Mre11 nuclease activities in DNA double-strand break repair, their role during replication has remained elusive. The nucleoside analog gemcitabine, widely used in cancer therapy, acts as a replication chain terminator; for a cell to survive treatment, gemcitabine needs to be removed from replicating DNA. Activities responsible for this removal have, so far, not been identified. We show that Mre11 3′ to 5′ exonuclease activity removes gemcitabine from nascent DNA during replication. This contributes to replication progression and gemcitabine resistance. We thus uncovered a replication-supporting role for Mre11 exonuclease activity, which is distinct from its previously reported detrimental role in uncontrolled resection in recombination-deficient cell

    Genome-wide profiling of DNA 5-hydroxymethylcytosine during rat Sertoli cell maturation

    No full text
    Sertoli cells have dual roles during the cells’ lifetime. In the juvenile mammal, Sertoli cells proliferate and create the structure of the testis, and during puberty they cease to proliferate and take on the adult role of supporting germ cells through spermatogenesis. Accordingly, many genes expressed in Sertoli cells during testis formation are repressed during spermatogenesis. 5-Hydroxymethylcytosine (5hmC) is a DNA modification enzymatically generated from 5mC and present in all investigated mammalian tissues at varying levels. Using mass spectrometry and immunofluorescence staining we identified a substantial Sertoli cell-specific global 5hmC increase during rat puberty. Chemical labeling, pull-down and sequencing of 5hmC-containing genomic DNA from juvenile and adult rat Sertoli cells revealed that genes that lose or gain 5hmC belong to different functional pathways and mirror the functions of the cells in the two different states. Loss of 5hmC is associated with genes involved in development and cell structure, whereas gain of 5hmC is associated with genes involved in cellular pathways pertaining to the function of the adult Sertoli cells. This redistribution during maturation shows that 5hmC is a dynamic nucleotide modification, correlated to gene expression

    The DNA modification N6-methyl-2’-deoxyadenosine (m6dA) drives activity-induced gene expression and is required for fear extinction

    No full text
    DNA modification is known to regulate experience-dependent gene expression. However, beyond cytosine methylation and its oxidated derivatives, very little is known about the functional importance of chemical modifications on other nucleobases in the brain. Here we report that in adult mice trained in fear extinction, the DNA modification N6-methyl-2'-deoxyadenosine (m6dA) accumulates along promoters and coding sequences in activated prefrontal cortical neurons. The deposition of m6dA is associated with increased genome-wide occupancy of the mammalian m6dA methyltransferase, N6amt1, and this correlates with extinction-induced gene expression. The accumulation of m6dA is associated with transcriptional activation at the brain-derived neurotrophic factor (Bdnf) P4 promoter, which is required for Bdnf exon IV messenger RNA expression and for the extinction of conditioned fear. These results expand the scope of DNA modifications in the adult brain and highlight changes in m6dA as an epigenetic mechanism associated with activity-induced gene expression and the formation of fear extinction memory
    corecore