261 research outputs found

    Long Distance Entanglement Generation in 2D Networks

    Full text link
    We consider 2D networks composed of nodes initially linked by two-qubit mixed states. In these networks we develop a global error correction scheme that can generate distance-independent entanglement from arbitrary network geometries using rank two states. By using this method and combining it with the concept of percolation we also show that the generation of long distance entanglement is possible with rank three states. Entanglement percolation and global error correction have different advantages depending on the given situation. To reveal the trade-off between them we consider their application on networks containing pure states. In doing so we find a range of pure-state schemes, each of which has applications in particular circumstances: For instance, we can identify a protocol for creating perfect entanglement between two distant nodes. However, this protocol can not generate a singlet between any two nodes. On the other hand, we can also construct schemes for creating entanglement between any nodes, but the corresponding entanglement fidelity is lower.Comment: 10 pages, 9 figures, 1 tabl

    The Optical Excitation of Zigzag Carbon Nanotubes with Photons Guided in Nanofibers

    Full text link
    We consider the excitation of electrons in semiconducting carbon nanotubes by photons from the evanescent field created by a subwavelength-diameter optical fiber. The strongly changing evanescent field of such nanofibers requires dropping the dipole approximation. We show that this leads to novel effects, especially a high dependence of the photon absorption on the relative orientation and geometry of the nanotube-nanofiber setup in the optical and near infrared domain. In particular, we calculate photon absorption probabilities for a straight nanotube and nanofiber depending on their relative angle. Nanotubes orthogonal to the fiber are found to perform much better than parallel nanotubes when they are short. As the nanotube gets longer the absorption of parallel nanotubes is found to exceed the orthogonal nanotubes and approach 100% for extremely long nanotubes. In addition, we show that if the nanotube is wrapped around the fiber in an appropriate way the absorption is enhanced. We find that optical and near infrared photons could be converted to excitations with efficiencies that may exceed 90%. This may provide opportunities for future photodetectors and we discuss possible setups.Comment: 14 pages, 14 figure

    Singlet Generation in Mixed State Quantum Networks

    Full text link
    We study the generation of singlets in quantum networks with nodes initially sharing a finite number of partially entangled bipartite mixed states. We prove that singlets between arbitrary nodes in such networks can be created if and only if the initial states connecting the nodes have a particular form. We then generalize the method of entanglement percolation, previously developed for pure states, to mixed states of this form. As part of this, we find and compare different distillation protocols necessary to convert groups of mixed states shared between neighboring nodes of the network into singlets. In addition, we discuss protocols that only rely on local rules for the efficient connection of two remote nodes in the network via entanglement swapping. Further improvements of the success probability of singlet generation are developed by using particular forms of `quantum preprocessing' on the network. This includes generalized forms of entanglement swapping and we show how such strategies can be embedded in regular and hierarchical quantum networks.Comment: 17 pages, 21 figure

    Entanglement Percolation with Bipartite Mixed States

    Full text link
    We develop a concept of entanglement percolation for long-distance singlet generation in quantum networks with neighboring nodes connected by partially entangled bipartite mixed states. We give a necessary and sufficient condition on the class of mixed network states for the generation of singlets. States beyond this class are insufficient for entanglement percolation. We find that neighboring nodes are required to be connected by multiple partially entangled states and devise a rich variety of distillation protocols for the conversion of these states into singlets. These distillation protocols are suitable for a variety of network geometries and have a sufficiently high success probability even for significantly impure states. In addition to this, we discuss possible further improvements achievable by using quantum strategies including generalized forms of entanglement swapping.Comment: 6+ pages, 5 figures; Published versio

    Far-ultraviolet Spectroscopy of Venus and Mars at 4 A Resolution with the Hopkins Ultraviolet Telescope on Astro-2

    Get PDF
    Far-ultraviolet spectra of Venus and Mars in the range 820-1840 A at 4 A resolution were obtained on 13 and 12 March 1995, respectively, by the Hopkins Ultraviolet Telescope (HUT), which was part of the Astro-2 observatory on the Space Shuttle Endeavour. Longward of 1250 A, the spectra of both planets are dominated by emission of the CO Fourth Positive band system and strong OI and CI multiplets. In addition, CO Hopfield-Birge bands, B - X (0,0) at 1151 A and C - X (0,0) at 1088 A, are detected for the first time, and there is a weak indication of the E - X (0,0) band at 1076 A in the spectrum of Venus. The B - X band is blended with emission from OI 1152. Modeling the relative intensities of these bands suggests that resonance fluorescence of CO is the dominant source of the emission, as it is for the Fourth Positive system. Shortward of Lyman-alpha, other emission features detected include OII 834, OI lambda 989, HI Lyman-beta, and NI 1134 and 1200. For Venus, the derived disk brightnesses of the OI, OII, and HI features are about one-half of those reported by Hord et al. (1991) from Galileo EUV measurements made in February 1990. This result is consistent with the expected variation from solar maximum to solar minimum. The ArI 1048, 1066 doublet is detected only in the spectrum of Mars and the derived mixing ratio of Ar is of the order of 2%, consistent with previous determinations.Comment: 8 pages, 5 figures, accepted for publication in ApJ, July 20, 200

    Curricular orientations to real-world contexts in mathematics

    Get PDF
    A common claim about mathematics education is that it should equip students to use mathematics in the ‘real world’. In this paper, we examine how relationships between mathematics education and the real world are materialised in the curriculum across a sample of eleven jurisdictions. In particular, we address the orientation of the curriculum towards application of mathematics, the ways that real-world contexts are positioned within the curriculum content, the ways in which different groups of students are expected to engage with real-world contexts, and the extent to which high-stakes assessments include real-world problem solving. The analysis reveals variation across jurisdictions and some lack of coherence between official orientations towards use of mathematics in the real world and the ways that this is materialised in the organisation of the content for students

    Blaming the victim: assessment, examinations, and the responsibilisation of students and teachers in neo-liberal governance

    Get PDF
    Historically, for a period of a hundred years or more from the 1860s to the 1960s, assessment developed as an educational technology for selecting and certificating small numbers of individual students. This process was largely focused on excluding the majority. Over the last 30–40 years, the focus and purpose of assessment has changed. The emphasis is now on education for all and the development of a fit-for-purpose assessment system as a system, that is, as part of an integrated approach to national human resource development. These changes have been both driven by, and contributed to, the development of the knowledge economy and neo-liberalism. Students and teachers have been ‘responsibilised’ for the quality and outcomes of education, with assessment and examinations providing the quintessential vehicle for individualising and responsibilising success and failure in relation to achievement and social mobility

    Reframing assessment research: through a practice perspective

    Get PDF
    Assessment as a field of investigation has been influenced by a limited number of perspectives. These have focused assessment research in particular ways that have emphasised measurement, or student learning or institutional policies. The aim of this paper is to view the phenomenon of assessment from a practice perspective drawing upon ideas from practice theory. Such a view places assessment practices as central. This perspective is illustrated using data from an empirical study of assessment decision-making and uses as an exemplar the identified practice of ‘bringing a new assessment task into being’. It is suggested that a practice perspective can position assessment as integral to curriculum practices and end separations of assessment from teaching and learning. It enables research on assessment to de-centre measurement and take account of the wider range of people, phenomena and things that constitute it

    UV and EUV Instruments

    Full text link
    We describe telescopes and instruments that were developed and used for astronomical research in the ultraviolet (UV) and extreme ultraviolet (EUV) regions of the electromagnetic spectrum. The wavelength ranges covered by these bands are not uniquely defined. We use the following convention here: The EUV and UV span the regions ~100-912 and 912-3000 Angstroem respectively. The limitation between both ranges is a natural choice, because the hydrogen Lyman absorption edge is located at 912 Angstroem. At smaller wavelengths, astronomical sources are strongly absorbed by the interstellar medium. It also marks a technical limit, because telescopes and instruments are of different design. In the EUV range, the technology is strongly related to that utilized in X-ray astronomy, while in the UV range the instruments in many cases have their roots in optical astronomy. We will, therefore, describe the UV and EUV instruments in appropriate conciseness and refer to the respective chapters of this volume for more technical details.Comment: To appear in: Landolt-Boernstein, New Series VI/4A, Astronomy, Astrophysics, and Cosmology; Instruments and Methods, ed. J.E. Truemper, Springer-Verlag, Berlin, 201

    Modeling magnetospheric fields in the Jupiter system

    Full text link
    The various processes which generate magnetic fields within the Jupiter system are exemplary for a large class of similar processes occurring at other planets in the solar system, but also around extrasolar planets. Jupiter's large internal dynamo magnetic field generates a gigantic magnetosphere, which is strongly rotational driven and possesses large plasma sources located deeply within the magnetosphere. The combination of the latter two effects is the primary reason for Jupiter's main auroral ovals. Jupiter's moon Ganymede is the only known moon with an intrinsic dynamo magnetic field, which generates a mini-magnetosphere located within Jupiter's larger magnetosphere including two auroral ovals. Ganymede's magnetosphere is qualitatively different compared to the one from Jupiter. It possesses no bow shock but develops Alfv\'en wings similar to most of the extrasolar planets which orbit their host stars within 0.1 AU. New numerical models of Jupiter's and Ganymede's magnetospheres presented here provide quantitative insight into the processes that maintain these magnetospheres. Jupiter's magnetospheric field is approximately time-periodic at the locations of Jupiter's moons and induces secondary magnetic fields in electrically conductive layers such as subsurface oceans. In the case of Ganymede, these secondary magnetic fields influence the oscillation of the location of its auroral ovals. Based on dedicated Hubble Space Telescope observations, an analysis of the amplitudes of the auroral oscillations provides evidence that Ganymede harbors a subsurface ocean. Callisto in contrast does not possess a mini-magnetosphere, but still shows a perturbed magnetic field environment. Callisto's ionosphere and atmospheric UV emission is different compared to the other Galilean satellites as it is primarily been generated by solar photons compared to magnetospheric electrons.Comment: Chapter for Book: Planetary Magnetis
    corecore