2,196 research outputs found

    Unconditionally verifiable blind computation

    Get PDF
    Blind Quantum Computing (BQC) allows a client to have a server carry out a quantum computation for them such that the client's input, output and computation remain private. A desirable property for any BQC protocol is verification, whereby the client can verify with high probability whether the server has followed the instructions of the protocol, or if there has been some deviation resulting in a corrupted output state. A verifiable BQC protocol can be viewed as an interactive proof system leading to consequences for complexity theory. The authors, together with Broadbent, previously proposed a universal and unconditionally secure BQC scheme where the client only needs to be able to prepare single qubits in separable states randomly chosen from a finite set and send them to the server, who has the balance of the required quantum computational resources. In this paper we extend that protocol with new functionality allowing blind computational basis measurements, which we use to construct a new verifiable BQC protocol based on a new class of resource states. We rigorously prove that the probability of failing to detect an incorrect output is exponentially small in a security parameter, while resource overhead remains polynomial in this parameter. The new resource state allows entangling gates to be performed between arbitrary pairs of logical qubits with only constant overhead. This is a significant improvement on the original scheme, which required that all computations to be performed must first be put into a nearest neighbour form, incurring linear overhead in the number of qubits. Such an improvement has important consequences for efficiency and fault-tolerance thresholds.Comment: 46 pages, 10 figures. Additional protocol added which allows arbitrary circuits to be verified with polynomial securit

    Flow Ambiguity: A Path Towards Classically Driven Blind Quantum Computation

    Get PDF
    Blind quantum computation protocols allow a user to delegate a computation to a remote quantum computer in such a way that the privacy of their computation is preserved, even from the device implementing the computation. To date, such protocols are only known for settings involving at least two quantum devices: either a user with some quantum capabilities and a remote quantum server or two or more entangled but noncommunicating servers. In this work, we take the first step towards the construction of a blind quantum computing protocol with a completely classical client and single quantum server. Specifically, we show how a classical client can exploit the ambiguity in the flow of information in measurement-based quantum computing to construct a protocol for hiding critical aspects of a computation delegated to a remote quantum computer. This ambiguity arises due to the fact that, for a fixed graph, there exist multiple choices of the input and output vertex sets that result in deterministic measurement patterns consistent with the same fixed total ordering of vertices. This allows a classical user, computing only measurement angles, to drive a measurement-based computation performed on a remote device while hiding critical aspects of the computation.Comment: (v3) 14 pages, 6 figures. expands introduction and definition of flow, corrects typos to increase readability; contains a new figure to illustrate example run of CDBQC protocol; minor changes to match the published version.(v2) 12 pages, 5 figures. Corrects motivation for quantities used in blindness analysi

    A complete genome sequence ofLactobacillus helveticus R0052, a commercial probiotic strain

    Get PDF
    Lactobacillus helveticus R0052 is a commercially available strain that is widely used in probiotic preparations. The genome sequence consisted of 2,129,425 bases. Comparative analysis showed that it was unique among L. helveticus strains in that it contained genes encoding mucus-binding proteins similar to those found in Lactobacillus acidophilus

    Genuinely Multipartite Concurrence of N-qubit X-matrices

    Full text link
    We find an algebraic formula for the N-partite concurrence of N qubits in an X-matrix. X- matricies are density matrices whose only non-zero elements are diagonal or anti-diagonal when written in an orthonormal basis. We use our formula to study the dynamics of the N-partite entanglement of N remote qubits in generalized N-party Greenberger-Horne-Zeilinger (GHZ) states. We study the case when each qubit interacts with a partner harmonic oscillator. It is shown that only one type of GHZ state is prone to entanglement sudden death; for the rest, N-partite entanglement dies out momentarily. Algebraic formulas for the entanglement dynamics are given in both cases

    Quantum computing on encrypted data

    Full text link
    The ability to perform computations on encrypted data is a powerful tool for protecting privacy. Recently, protocols to achieve this on classical computing systems have been found. Here we present an efficient solution to the quantum analogue of this problem that enables arbitrary quantum computations to be carried out on encrypted quantum data. We prove that an untrusted server can implement a universal set of quantum gates on encrypted quantum bits (qubits) without learning any information about the inputs, while the client, knowing the decryption key, can easily decrypt the results of the computation. We experimentally demonstrate, using single photons and linear optics, the encryption and decryption scheme on a set of gates sufficient for arbitrary quantum computations. Because our protocol requires few extra resources compared to other schemes it can be easily incorporated into the design of future quantum servers. These results will play a key role in enabling the development of secure distributed quantum systems

    Bulletin No. 325 - An Economic Study of Sheep Production in Southwestern Utah

    Get PDF
    Range sheep production has been one of the major agricultural enterprises in Utah, particularly in the southwestern part of the state, since these areas were first settled. Stock sheep numbers in Utah were about 2,100,000 by 1890, which is approximately the present number in the state. Since 1890 the numbers have fluctuated between 2,000,000 and 2,775,000. This important industry has, from the time of its introduction, been closely associated with the use of public range lands. The unrestricted grazing of public range lands resulted in damage to a considerable area and was one of the important factors that led to the establishment of federal agencies to administer these properties

    Unforgeable Quantum Encryption

    Get PDF
    We study the problem of encrypting and authenticating quantum data in the presence of adversaries making adaptive chosen plaintext and chosen ciphertext queries. Classically, security games use string copying and comparison to detect adversarial cheating in such scenarios. Quantumly, this approach would violate no-cloning. We develop new techniques to overcome this problem: we use entanglement to detect cheating, and rely on recent results for characterizing quantum encryption schemes. We give definitions for (i.) ciphertext unforgeability , (ii.) indistinguishability under adaptive chosen-ciphertext attack, and (iii.) authenticated encryption. The restriction of each definition to the classical setting is at least as strong as the corresponding classical notion: (i) implies INT-CTXT, (ii) implies IND-CCA2, and (iii) implies AE. All of our new notions also imply QIND-CPA privacy. Combining one-time authentication and classical pseudorandomness, we construct schemes for each of these new quantum security notions, and provide several separation examples. Along the way, we also give a new definition of one-time quantum authentication which, unlike all previous approaches, authenticates ciphertexts rather than plaintexts.Comment: 22+2 pages, 1 figure. v3: error in the definition of QIND-CCA2 fixed, some proofs related to QIND-CCA2 clarifie

    Anonymous quantum communication

    Full text link
    We present the first protocol for the anonymous transmission of a quantum state that is information-theoretically secure against an active adversary, without any assumption on the number of corrupt participants. The anonymity of the sender and receiver is perfectly preserved, and the privacy of the quantum state is protected except with exponentially small probability. Even though a single corrupt participant can cause the protocol to abort, the quantum state can only be destroyed with exponentially small probability: if the protocol succeeds, the state is transferred to the receiver and otherwise it remains in the hands of the sender (provided the receiver is honest).Comment: 11 pages, to appear in Proceedings of ASIACRYPT, 200

    Quantifying the nonlocality of GHZ quantum correlations by a bounded communication simulation protocol

    Get PDF
    The simulation of quantum correlations with alternative nonlocal resources, such as classical communication, gives a natural way to quantify their nonlocality. While multipartite nonlocal correlations appear to be useful resources, very little is known on how to simulate multipartite quantum correlations. We present the first known protocol that reproduces 3-partite GHZ correlations with bounded communication: 3 bits in total turn out to be sufficient to simulate all equatorial Von Neumann measurements on the 3-partite GHZ state.Comment: 7 pages, 1 figur
    corecore