97 research outputs found

    Optimizing sparse sampling for 2D electronic spectroscopy

    Get PDF
    We present a new data acquisition concept using optimized non-uniform sampling and compressed sensing reconstruction in order to substantially decrease the acquisition times in action-based multidimensional electronic spectroscopy. For this we acquire a regularly sampled reference data set at a fixed population time and use a genetic algorithm to optimize a reduced non-uniform sampling pattern. We then apply the optimal sampling for data acquisition at all other population times. Furthermore, we show how to transform two-dimensional (2D) spectra into a joint 4D time-frequency von Neumann representation. This leads to increased sparsity compared to the Fourier domain and to improved reconstruction. We demonstrate this approach by recovering transient dynamics in the 2D spectrum of a cresyl violet sample using just 25% of the originally sampled data points

    Nanoscale force manipulation in the vicinity of a metal nanostructure

    Get PDF
    The tight focus of Gaussian beams is commonly used to trap dielectric particles in optical tweezers. The corresponding field distribution generates a well-defined trapping potential that is only marginally controllable on a nanometre scale. Here we investigate the influence of a metal nanostructure that is located in the vicinity of the trapping focus on the trapping potential by calculating the corresponding field and force distributions. Even for an excitation wavelength that is tuned far from the plasmonic resonance of the nanostructure, the presence of the latter alters significantly the trap potential. For the given nanostructure, a ring of spheres that is illuminated in the axial direction, a smaller focus volume is observed in comparison to free focus. The superposition of this non-resonant Gaussian field with a planar wave illumination that is tuned to the plasmonic resonance gives a handle to modify the trapping potential. Polarization and intensity of the resonant illumination allows modifying the equilibrium position of the trapping potential, thus providing means to steer dielectric particles with nanometre precision. © 2007 IOP Publishing Ltd.TB thanks the DFG for an Emmy Noether Fellowship.Peer Reviewe

    Mapping of exciton-exciton annihilation in a molecular dimer via fifth-order femtosecond two-dimensional spectroscopy

    Get PDF
    We present a theoretical study on exciton–exciton annihilation (EEA) in a molecular dimer. This process is monitored using a fifth-order coherent two-dimensional (2D) spectroscopy as was recently proposed by Dostál et al. [Nat. Commun. 9, 2466 (2018)]. Using an electronic three-level system for each monomer, we analyze the different paths which contribute to the 2D spectrum. The spectrum is determined by two entangled relaxation processes, namely, the EEA and the direct relaxation of higher lying excited states. It is shown that the change of the spectrum as a function of a pulse delay can be linked directly to the presence of the EEA process

    Spectral-interference microscopy for characterization of functional plasmonic elements

    Get PDF
    Plasmonic modes supported by noble-metal nanostructures offer strong subwavelength electric-field confinement and promise the realization of nanometer-scale integrated optical circuits with well-defined functionality. In order to measure the spectral and spatial response functions of such plasmonic elements, we combine a confocal microscope setup with spectral interferometry detection. The setup, data acquisition, and data evaluation are discussed in detail by means of exemplary experiments involving propagating plasmons transmitted through silver nanowires. By considering and experimentally calibrating any setup-inherent signal delay with an accuracy of 1 fs, we are able to extract correct timing information of propagating plasmons. The method can be applied, e.g., to determine the dispersion and group velocity of propagating plasmons in nanostructures, and can be extended towards the investigation of nonlinear phenomena

    Exciton-phonon coupling strength in single-layer MoSe2 at room temperature

    Get PDF
    Single-layer transition metal dichalcogenides are at the center of an ever increasing research effort both in terms of fundamental physics and applications. Exciton-phonon coupling plays a key role in determining the (opto)electronic properties of these materials. However, the exciton-phonon coupling strength has not been measured at room temperature. Here, we develop two-dimensional micro-spectroscopy to determine exciton-phonon coupling of single-layer MoSe2. We detect beating signals as a function of waiting time T, induced by the coupling between the A exciton and the A'1 optical phonon. Analysis of two-dimensional beating maps combined with simulations provides the exciton-phonon coupling. The Huang-Rhys factor of ~1 is larger than in most other inorganic semiconductor nanostructures. Our technique offers a unique tool to measure exciton-phonon coupling also in other heterogeneous semiconducting systems with a spatial resolution ~260 nm, and will provide design-relevant parameters for the development of optoelectronic devices

    Interplay between structural hierarchy and exciton diffusion in artificial light harvesting

    Get PDF
    Unravelling the nature of energy transport in multi-chromophoric photosynthetic complexes is essential to extract valuable design blueprints for light-harvesting applications. Long-range exciton transport in such systems is facilitated by a combination of delocalized excitation wavefunctions (excitons) and remarkable exciton diffusivities. The unambiguous identification of the exciton transport, however, is intrinsically challenging due to the system's sheer complexity. Here we address this challenge by employing a novel spectroscopic lab-on-a-chip approach: A combination of ultrafast coherent two-dimensional spectroscopy and microfluidics working in tandem with theoretical modelling. This allowed us to unveil exciton transport throughout the entire hierarchical supramolecular structure of a double-walled artificial light-harvesting complex. We show that at low exciton densities, the outer layer acts as an antenna that supplies excitons to the inner tube, while under high excitation fluences it protects the inner tube from overburning. Our findings shed light on the excitonic trajectories across different sub-units of a multi-layered supramolecular structure and underpin the great potential of artificial light-harvesting complexes for directional excitation energy transport.Comment: Submitted to Nature Communications; main manuscript 37 pages (incl. references) and 5 figures. SI 59 pages (incl. references) and 25 Figure

    Exciton–phonon coupling strength in single-layer MoSe 2 at room temperature

    Get PDF
    Funder: EC | EC Seventh Framework Programm | FP7 Ideas: European Research Council (FP7-IDEAS-ERC - Specific Programme: "Ideas" Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013)); doi: https://doi.org/10.13039/100011199; Grant(s): 319277Abstract: Single-layer transition metal dichalcogenides are at the center of an ever increasing research effort both in terms of fundamental physics and applications. Exciton–phonon coupling plays a key role in determining the (opto)electronic properties of these materials. However, the exciton–phonon coupling strength has not been measured at room temperature. Here, we use two-dimensional micro-spectroscopy to determine exciton–phonon coupling of single-layer MoSe2. We detect beating signals as a function of waiting time induced by the coupling between A excitons and A′1 optical phonons. Analysis of beating maps combined with simulations provides the exciton–phonon coupling. We get a Huang–Rhys factor ~1, larger than in most other inorganic semiconductor nanostructures. Our technique offers a unique tool to measure exciton–phonon coupling also in other heterogeneous semiconducting systems, with a spatial resolution ~260 nm, and provides design-relevant parameters for the development of optoelectronic devices

    Precise and rapid detection of optical activity for accumulative femtosecond spectroscopy

    Get PDF
    We present polarimetry, i.e. the detection of optical rotation of light polarization, in a configuration suitable for femtosecond spectroscopy. The polarimeter is based on common-path optical heterodyne interferometry and provides fast and highly sensitive detection of rotatory power. Femtosecond pump and polarimeter probe beams are integrated into a recently developed accumulative technique that further enhances sensitivity with respect to single-pulse methods. The high speed of the polarimeter affords optical rotation detection during the pump-pulse illumination period of a few seconds. We illustrate the concept on the photodissociation of the enantiomers of methyl p-tolyl sulfoxide. The sensitivity of rotatory detection, i.e. the minimum rotation angle that can be measured, is determined experimentally including all noise sources to be 0.10 milli-degrees for a measurement time of only one second and an interaction length of 250 ÎĽm. The suitability of the presented setup for femtosecond studies is demonstrated in a non-resonant two-photon photodissociation experiment
    • …
    corecore