38 research outputs found

    Remodelling of gap junctions and connexin expression in diseased myocardium

    Get PDF
    Gap junctions form the cell-to-cell pathways for propagation of the precisely orchestrated patterns of current flow that govern the regular rhythm of the healthy heart. As in most tissues and organs, multiple connexin types are expressed in the heart: connexin43 (Cx43), Cx40 and Cx45 are found in distinctive combinations and relative quantities in different, functionally-specialized subsets of cardiac myocyte. Mutations in genes that encode connexins have only rarely been identified as being a cause of human cardiac disease, but remodelling of connexin expression and gap junction organization are well documented in acquired adult heart disease, notably ischaemic heart disease and heart failure. Remodelling may take the form of alterations in (i) the distribution of gap junctions and (ii) the amount and type of connexins expressed. Heterogeneous reduction in Cx43 expression and disordering in gap junction distribution feature in human ventricular disease and correlate with electrophysiologically identified arrhythmic changes and contractile dysfunction in animal models. Disease-related alterations in Cx45 and Cx40 expression have also been reported, and some of the functional implications of these are beginning to emerge. Apart from ventricular disease, various features of gap junction organization and connexin expression have been implicated in the initiation and persistence of the most common form of atrial arrhythmia, atrial fibrillation, though the disparate findings in this area remain to be clarified. Other major tasks ahead focus on the Purkinje/working ventricular myocyte interface and its role in normal and abnormal impulse propagation, connexin-interacting proteins and their regulatory functions, and on defining the precise functional properties conferred by the distinctive connexin co-expression patterns of different myocyte types in health and disease

    Bone histomorphometric measures of physical activity in children from Medieval England

    Get PDF
    Objectives: Histomorphometric studies show consistent links between physical activity patterns and the microstructure underlying the size and shape of bone. Here we adopt a combined bone approach to explore variation in microstructure of ribs and humeri related to physical activity and historical records of manual labor in skeletal samples of children (n=175) from medieval England. The humerus reflects greater biomechanically induced microstructural variation than the rib which is used here as a control. Variation in microstructure is sought between regions in England (Canterbury, York, Newcastle), and between high- and low-status children from Canterbury. Materials and Methods: Thin-sections were prepared from the humerus or rib and features of bone remodeling were recorded using high-resolution microscopy and image analysis software. Results: The density and size of secondary osteons in the humerus differed significantly in children from Canterbury when compared to those from York and Newcastle. Amongst the older children, secondary osteon circularity and diameter differed significantly between higher and lower status children. Discussion: By applying bone remodeling principles to the histomorphometric data we infer that medieval children in Canterbury engaged in less physically demanding activities than children from York or Newcastle. Within Canterbury, high-status and low-status children experienced similar biomechanical loading until around seven years of age. After this age low-status children performed activities that resulted in more habitual loading on their arm bones than the high-status children. This inferred change in physical activity is consistent with historical textual evidence that describes children entering the work force at this age

    Localization of candidate regions for a novel gene for Kartagener syndrome.

    No full text
    Asymmetric positioning of internal organs is a characteristics of vertebrates. The normal left-right anatomic positioning, situs solitus, sometimes does not occur normaly, leading to laterality defects. Studies in animal models have shown that laterality decisions are mediated by a cascade of genes that lead to the asymmetric expression of Nodal, LEFTA, LEFTB and PITX2 in the lateral plate mesoderm. A search for mutations in genes implicated in left-right patterning in animal models allowed genes associated with heterotaxia defects in humans to be identified. However, these genes explain only a small percentage of human situs defects, suggesting that other genes must play a role. In this study, we report a consanguineous family of Turkish origin, composed of two unaffected parents and three children, two of whom presented Kartagener syndrome. On the basis of their family history, we hypothesize autosomal recessive mode of inheritance. A genotype analysis with polymorphic markers did not show linkage with any known genes or loci causing laterality disorders. Array CGH did not detect a duplication or microdeletion greater than 1 Mb as a possible cause. Genome wide screening using 10 K Affymetrix SNP chips was performed, allowing the identification of two regions of autozygosity, one in chromosome 1 and the other on chromosome 7. In the chromosome 1 locus, a strong candidate gene, encoding the kinesin-associated protein 3 (KIF3AP) was not mutated, based on SSCP/heteroduplex analysis and direct sequencing. These data provide a basis for the identification of a novel gene implicated in Kartagener syndrome
    corecore