59 research outputs found
Harmonisation of short-term in vitro culture for the expansion of antigen-specific CD8(+) T cells with detection by ELISPOT and HLA-multimer staining.
Ex vivo ELISPOT and multimer staining are well-established tests for the assessment of antigen-specific T cells. Many laboratories are now using a period of in vitro stimulation (IVS) to enhance detection. Here, we report the findings of a multi-centre panel organised by the Association for Cancer Immunotherapy Immunoguiding Program to investigate the impact of IVS protocols on the detection of antigen-specific T cells of varying ex vivo frequency. Five centres performed ELISPOT and multimer staining on centrally prepared PBMCs from 3 donors, both ex vivo and following IVS. A harmonised IVS protocol was designed based on the best-performing protocol(s), which was then evaluated in a second phase on 2 donors by 6 centres. All centres were able to reliably detect antigen-specific T cells of high/intermediate frequency both ex vivo (Phase I) and post-IVS (Phase I and II). The highest frequencies of antigen-specific T cells ex vivo were mirrored in the frequencies following IVS and in the detection rates. However, antigen-specific T cells of a low/undetectable frequency ex vivo were not reproducibly detected post-IVS. Harmonisation of the IVS protocol reduced the inter-laboratory variation observed for ELISPOT and multimer analyses by approximately 20 %. We further demonstrate that results from ELISPOT and multimer staining correlated after (P < 0.0001 and R (2) = 0.5113), but not before IVS. In summary, IVS was shown to be a reproducible method that benefitted from method harmonisation
Development of an RNA-based kit for easy generation of TCR-engineered lymphocytes to control T-cell assay performance
Experimental cancer immunology and therap
Defining the Critical Hurdles in Cancer Immunotherapy
ABSTRACT: Scientific discoveries that provide strong evidence of antitumor effects in preclinical models often encounter significant delays before being tested in patients with cancer. While some of these delays have a scientific basis, others do not. We need to do better. Innovative strategies need to move into early stage clinical trials as quickly as it is safe, and if successful, these therapies should efficiently obtain regulatory approval and widespread clinical application. In late 2009 and 2010 the Society for Immunotherapy of Cancer (SITC), convened an "Immunotherapy Summit" with representatives from immunotherapy organizations representing Europe, Japan, China and North America to discuss collaborations to improve development and delivery of cancer immunotherapy. One of the concepts raised by SITC and defined as critical by all parties was the need to identify hurdles that impede effective translation of cancer immunotherapy. With consensus on these hurdles, international working groups could be developed to make recommendations vetted by the participating organizations. These recommendations could then be considered by regulatory bodies, governmental and private funding agencies, pharmaceutical companies and academic institutions to facilitate changes necessary to accelerate clinical translation of novel immune-based cancer therapies. The critical hurdles identified by representatives of the collaborating organizations, now organized as the World Immunotherapy Council, are presented and discussed in this report. Some of the identified hurdles impede all investigators, others hinder investigators only in certain regions or institutions or are more relevant to specific types of immunotherapy or first-in-humans studies. Each of these hurdles can significantly delay clinical translation of promising advances in immunotherapy yet be overcome to improve outcomes of patients with cancer
Guidelines for the automated evaluation of Elispot assays
Experimental cancer immunology and therap
Harmonization of the intracellular cytokine staining assay
Experimental cancer immunology and therap
Serum is not required for ex vivo IFN-gamma ELISPOT: a collaborative study of different protocols from the European CIMT immunoguiding program
The Cancer Immunotherapy Immunoguiding Program has conducted an IFN-gamma ELISPOT proficiency panel to examine the influence of serum supplementation of test media on assay performance. Sixteen European laboratories analyzed the same PBMC samples using different locally established protocols. Participants generated two simultaneous data sets-one using medium supplemented with serum and one without serum. Performances of the two test conditions were compared by quantifying: (1) the number of viable cells, (2) background spot formation induced in the medium only control and (3) the ability to detect antigen-specific T cell responses. The study demonstrated that the number of viable cells recovered and the overall background spot production were not significantly different between the two conditions. Furthermore, overall laboratory performance was equivalent for the two test conditions; 11 out of 16 laboratories reported equal or greater detection rates using serum-free medium, while 5 laboratories reported decreased detections rates under serum-free conditions. These results show that good performance of the IFN-gamma ELISPOT assay can be achieved under serum-free conditions. Optimization of the protocol for serum-free conditions should result in excellent detection rates and eliminate the requirement of serum batch and stability testing, allowing further harmonization of the assay
- …