28 research outputs found

    The influence of expertise on brain activation of the action observation network during anticipation of tennis and volleyball serves

    Get PDF
    In many daily activities, and especially in sport, it is necessary to predict the effects of others´ actions in order to initiate appropriate responses. Recently, researchers have suggested that the action–observation network (AON) including the cerebellum plays an essential role during such anticipation, particularly in sport expert performers. In the present study, we examined the influence of task-specific expertise on the AON by investigating differences between two expert groups trained in different sports while anticipating action effects. Altogether, 15 tennis and 16 volleyball experts anticipated the direction of observed tennis and volleyball serves while undergoing functional magnetic resonance imaging (fMRI). The expert group in each sport acted as novice controls in the other sport with which they had only little experience. When contrasting anticipation in both expertise conditions with the corresponding untrained sport, a stronger activation of AON areas (SPL, SMA), and particularly of cerebellar structures, was observed. Furthermore, the neural activation within the cerebellum and the SPL was linearly correlated with participant´s anticipation performance, irrespective of the specific expertise. For the SPL, this relationship also holds when an expert performs a domain-specific anticipation task. Notably, the stronger activation of the cerebellum as well as of the SMA and the SPL in the expertise conditions suggests that experts rely on their more fine-tuned perceptual-motor representations that have improved during years of training when anticipating the effects of others´ actions in their preferred sport. The association of activation within the SPL and the cerebellum with the task achievement suggests that these areas are the predominant brain sites involved in fast motor predictions. The SPL reflects the processing of domain-specific contextual information and the cerebellum the usage of a predictive internal model to solve the anticipation task

    Differential activation of the lateral premotor cortex during action observation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Action observation leads to neural activation of the human premotor cortex. This study examined how the level of motor expertise (expert vs. novice) in ballroom dancing and the visual viewpoint (internal vs. external viewpoint) influence this activation within different parts of this area of the brain.</p> <p>Results</p> <p>Sixteen dance experts and 16 novices observed ballroom dance videos from internal or external viewpoints while lying in a functional magnetic resonance imaging scanner. A conjunction analysis of all observation conditions showed that action observation activated distinct networks of premotor, parietal, and cerebellar structures. Experts revealed increased activation in the ventral premotor cortex compared to novices. An internal viewpoint led to higher activation of the dorsal premotor cortex.</p> <p>Conclusions</p> <p>The present results suggest that the ventral and dorsal premotor cortex adopt differential roles during action observation depending on the level of motor expertise and the viewpoint.</p

    Activation of the parieto-premotor network is associated with vivid motor imagery – a parametric fMRI study

    Get PDF
    The present study examined the neural basis of vivid motor imagery with parametrical functional magnetic resonance imaging. 22 participants performed motor imagery (MI) of six different right-hand movements that differed in terms of pointing accuracy needs and object involvement, i.e., either none, two big or two small squares had to be pointed at in alternation either with or without an object grasped with the fingers. After each imagery trial, they rated the perceived vividness of motor imagery on a 7-point scale. Results showed that increased perceived imagery vividness was parametrically associated with increasing neural activation within the left putamen, the left premotor cortex (PMC), the posterior parietal cortex of the left hemisphere, the left primary motor cortex, the left somatosensory cortex, and the left cerebellum. Within the right hemisphere, activation was found within the right cerebellum, the right putamen, and the right PMC. It is concluded that the perceived vividness of MI is parametrically associated with neural activity within sensorimotor areas. The results corroborate the hypothesis that MI is an outcome of neural computations based on movemen

    Confidence in emotion perception in point-light displays varies with the ability to perceive own emotions.

    Get PDF
    One central issue in social cognitive neuroscience is that perceiving emotions in others relates to activating the same emotion in oneself. In this study we sought to examine how the ability to perceive own emotions assessed with the Toronto Alexithymia Scale related to both the ability to perceive emotions depicted in point-light displays and the confidence in these perceptions. Participants observed video scenes of human interactions, rated the depicted valence, and judged their confidence in this rating. Results showed that people with higher alexithymia scores were significantly less confident about their decisions, but did not differ from people with lower alexithymia scores in the valence of their ratings. Furthermore, no modulating effect of social context on the effect of higher alexithymia scores was found. It is concluded that the used stimuli are fit to investigate the kinematic aspect of emotion perception and possibly separate people with high and low alexithymia scores via confidence differences. However, a general difference in emotion perception was not detected in the present setting
    corecore