54 research outputs found

    Dosing of factor VIII concentrate by ideal body weight is more accurate in overweight and obese haemophilia A patients

    Get PDF
    Aims Under- and, especially, overdosing of replacement therapy in haemophilia A patients may be prevented by application of other morphometric variables than body weight (BW) to dose factor VIII (FVIII) concentrates. Therefore, we aimed to investigate which morphometric variables best describe interindividual variability (IIV) of FVIII concentrate pharmacokinetic (PK) parameters. Methods PK profiling was performed by measuring 3 FVIII levels after a standardized dose of 50 IU kg(-1) FVIII concentrate. A population PK model was constructed, in which IIV for clearance (CL) and central volume of distribution (V1) was quantified. Relationships between CL, V1 and 5 morphometric variables (BW, ideal BW [IBW], lean BW, adjusted BW, and body mass index [BMI]) were evaluated in normal weight (BMI 30 kg m(-2)). Results In total, 57 haemophilia A patients (FVIII Conclusion IBW is the most suitable morphometric variable to explain interindividual FVIII PK variability and is more appropriate to dose overweight and obese patients

    ADAMTS-13 and bleeding phenotype in von Willebrand disease

    Get PDF
    Background: The bleeding phenotype of von Willebrand disease (VWD) varies highly between patients and can only partly be explained by von Willebrand factor (VWF) parameters. By cleaving large VWF multimers into smaller, less active multimers, ADAMTS-13 is an important regulator of VWF activity. However, it is unknown what the role of ADAMTS-13 is in individuals with VWD. Objectives: We therefore studied how ADAMTS-13 activity is associated with the laboratory and bleeding phenotype in individuals with VWD. Methods: We measured ADAMTS-13 activity using the fluorescence resonance energy transfer substrate VWF 73 assay in 638 individuals with VWD in the nationwide cross-sectional Willebrand in the Netherlands study and in 36 healthy controls. The bleeding phenotype was assessed using the Tosetto bleeding score. Results: ADAMTS-13 activity was similar in individuals with VWD (109% +/- 20.6%) and controls (110% +/- 19.7%). ADAMTS-13 activity was higher in individuals with VWD with type 3 than those with type 1 (mean difference, 11.8%; 95% confidence interval [CI], 2.9%-20.8%) or type 2 (mean difference, 16.1%; 95% CI, 7.1%-25.1%). ADAMTS-13 activity was not associated with the Tosetto bleeding score (0.1 Tosetto bleeding score increase per 10% ADAMTS-13 increase, 95% CI, -0.2 to 0.3). Furthermore, ADAMTS-13 activity did not differ between individuals with and without a bleeding event during the year preceding blood sampling (mean difference, 1.4%; 95% CI, -2.1% to 4.9%). Conclusion: ADAMTS-13 activity was highest in individuals with type 3 VWD, but it had only minor associations with VWF parameters. ADAMTS-13 activity does not influence the bleeding phenotype in individuals with VWD

    Validation of a perioperative population factor VIII pharmacokinetic model with a large cohort of pediatric hemophilia a patients

    Get PDF
    AIMS: Population pharmacokinetic (PK) models are increasingly applied to perform individualized dosing of factor VIII (FVIII) concentrates in haemophilia A patients. To guarantee accurate performance of a population PK model in dose individualization, validation studies are of importance. However, external validation of population PK models requires independent data sets and is, therefore, seldomly performed. Therefore, this study aimed to validate a previously published population PK model for FVIII concentrates administrated perioperatively. METHODS: A previously published population PK model for FVIII concentrate during surgery was validated using independent data from 87 children with severe haemophilia A with a median (range) age of 2.6 years (0.03–15.2) and body weight of 14 kg (4–57). First, the predictive performance of the previous model was evaluated with MAP Bayesian analysis using NONMEM v7.4. Subsequently, the model parameters were (re)estimated using a combined dataset consisting of the previous modelling data and the data available for the external validation. RESULTS: The previous model underpredicted the measured FVIII levels with a median of 0.17 IU mL(−1). Combining the new, independent and original data, a dataset comprising 206 patients with a mean age of 7.8 years (0.03–77.6) and body weight of 30 kg (4–111) was obtained. Population PK modelling provided estimates for CL, V1, V2, and Q: 171 mL h(−1) 68 kg(−1), 2930 mL 68 kg(−1), 1810 mL 68 kg(−1), and 172 mL h(−1) 68 kg(−1), respectively. This model adequately described all collected FVIII levels, with a slight median overprediction of 0.02 IU mL(−1). CONCLUSIONS: This study emphasizes the importance of external validation of population PK models using real‐life data

    Population pharmacokinetics of the von Willebrand factor-factor VIII interaction in patients with von Willebrand disease

    Get PDF
    Recent studies have reported that patients with von Willebrand disease treated perioperatively with a von Willebrand factor (VWF)/factor VIII (FVIII) concentrate with a ratio of 2.4:1 (Humate P/Haemate P) often present with VWF and/or FVIII levels outside of prespecified target levels necessary to prevent bleeding. Pharmacokinetic (PK)-guided dosing may resolve this problem. As clinical guidelines increasingly recommend aiming for certain target levels of both VWF and FVIII, application of an integrated population PK model describing both VWF activity (VWF:Act) and FVIII levels may improve dosing and quality of care. In total, 695 VWF:Act and 894 FVIII level measurements from 118 patients (174 surgeries) who were treated perioperatively with the VWF/FVIII concentrate were used to develop this population PK model using nonlinear mixed-effects modeling. VWF:Act and FVIII levels were analyzed simultaneously using a turnover model. The protective effect of VWF:Act on FVIII clearance was described with an inhibitory maximum effect function. An average perioperative VWF:Act level of 1.23 IU/mL decreased FVIII clearance from 460 mL/h to 264 mL/h, and increased FVIII half-life from 6.6 to 11.4 hours. Clearly, in the presence of VWF, FVIII clearance decreased with a concomitant increase of FVIII half-life, clarifying the higher FVIII levels observed after repetitive dosing with this concentrate. VWF:Act and FVIII levels during perioperative treatment were described adequately by this newly developed integrated population PK model. Clinical application of this model may facilitate more accurate targeting of VWF:Act and FVIII levels during perioperative treatment with this specific VWF/FVIII concentrate (Humate P/Haemate P).Thrombosis and Hemostasi

    Von Willebrand Factor Multimer Densitometric Analysis:Validation of the Clinical Accuracy and Clinical Implications in Von Willebrand Disease

    Get PDF
    Von Willebrand factor (VWF) multimer analysis is important in the classification of von Willebrand disease (VWD). Current visual VWF multimer analysis is time consuming and inaccurate in detecting subtle changes in multimer patterns. Although VWF multimer densitometric analysis may be useful, the accuracy needs further investigation before it can be widely applied. In this study we aimed to validate VWF multimer densitometric analysis in a large cohort of VWD patients and to identify patient characteristics associated with densitometric outcomes. Patients were included from the Willebrand in the Netherlands (WiN) study, in which a bleeding score (BS) was obtained, and blood was drawn. For multimer analysis, citrated blood was separated on an agarose gel and visualized by Western blotting. IMAGEJ was used to generate densitometric images and medium-large VWF multimer index was calculated. We included 560 VWD patients: 328 type 1, 211 type 2, and 21 type 3 patients. Medium-large VWF multimer index performed excellent in distinguishing visually classified normal VWF multimers from reduced high-molecular-weight (HMW) multimers (area under the curve [AUC]: 0.96 [0.94-0.98], P < 0.001), normal multimers from absence of HMW multimers (AUC 1.00 [1.00-1.00], P < 0.001), and type 2A and 2B from type 2M and 2N (AUC: 0.96 [0.94-0.99], P < 0.001). Additionally, higher medium-large VWF multimer index was associated with lower BS in type 1 VWD: beta = -7.6 (-13.0 to -2.1), P = 0.007, adjusted for confounders. Densitometric analysis of VWF multimers had an excellent accuracy compared with visual multimer analysis and may contribute to a better understanding of the clinical features such as the bleeding phenotype of VWD patients

    von Willebrand Factor and Factor VIII Clearance in Perioperative Hemophilia A Patients

    Get PDF
    Background von Willebrand factor (VWF) is crucial for optimal dosing of factor VIII (FVIII) concentrate in hemophilia A patients as it protects FVIII from premature clearance. To date, it is unknown how VWF behaves and what its impact is on FVIII clearance in the perioperative setting. Aim To investigate VWF kinetics (VWF antigen [VWF:Ag]), VWF glycoprotein Ib binding (VWF:GPIbM), and VWF propeptide (VWFpp) in severe and moderate perioperative hemophilia A patients included in the randomized controlled perioperative OPTI-CLOT trial. Methods Linear mixed effects modeling was applied to analyze VWF kinetics. One-way and two-way analyses of variance were used to investigate perioperative VWFpp/VWF:Ag ratios and associations with surgical bleeding. Results Fifty-nine patients with median age of 48.8 years (interquartile range: 34.8-60.0) were included. VWF:Ag and VWF:GPIbM increased significantly postoperatively. Blood type non-O or medium risk surgery were associated with higher VWF:Ag and VWF:GPIbM levels compared with blood type O and low risk surgery. VWFpp/VWF:Ag was significantly higher immediately after surgery than 32 to 57 hours after surgery (p < 0.001). Lowest VWF:Ag quartile (0.43-0.92 IU/mL) was associated with an increase of FVIII concentrate clearance of 26 mL/h (95% confidence interval: 2-50 mL/h) compared with highest VWF antigen quartile (1.70-3.84 IU/mL). VWF levels were not associated with perioperative bleeding F (4,227) = 0.54, p = 0.710. Conclusion VWF:Ag and VWF:GPIbM levels increase postoperatively, most significantly in patients with blood type non-O or medium risk surgery. Lower VWF antigen levels did not lead to clinically relevant higher FVIII clearance. VWF:Ag or VWF:GPIbM levels were not associated with perioperative hemorrhage

    Importance of Genotyping in von Willebrand Disease to Elucidate Pathogenic Mechanisms and Variability in Phenotype

    Get PDF
    Genotyping is not routinely performed at diagnosis of von Willebrand disease (VWD). Therefore, the association between genetic variants and pathogenic mechanism or the clinical and laboratory phenotype is unknown in most patients, especially in type 1 VWD. To investigate whether genotyping adds to a better understanding of the pathogenic mechanisms and variability in phenotype, we analyzed the VWF gene in 390 well-defined VWD patients, included in the WiN study. A VWF gene variant was found in 155 patients (61.5%) with type 1, 122 patients (98.4%) with type 2, and 14 patients (100%) with type 3 VWD. Forty-eight variants were novel. For each VWF gene variant, the pathogenic mechanisms associated with reduced VWF levels was investigated using the FVIII:C/VWF:Ag and VWFpp/VWF:Ag ratios. In type 1 VWD, reduced synthesis or secretion of VWF was most frequently found in patients with nonsense variants, frameshift variants, and deletions, whereas rapid clearance of VWF was mainly found in patients with missense variants. Furthermore, type 1 VWD patients with and without a VWF gene variant were clearly distinct in their clinical features such as age of diagnosis, laboratory phenotype, and bleeding phenotype. In type 2 VWD, 81% of variants were associated with an increased clearance of VWF. To conclude, we identified the pathogenic mechanisms associated with various VWF gene variants in type 1, 2, and 3 VWD patients. Additionally, major differences in the phenotype of type 1 VWD patients with and without a variant were observed, which may be of importance for clinical management

    Perioperative pharmacokinetic-guided factor VIII concentrate dosing in haemophilia (OPTI-CLOT trial):an open-label, multicentre, randomised, controlled trial

    Get PDF
    Background Dosing of replacement therapy with factor VIII concentrate in patients with haemophilia A in the perioperative setting is challenging. Underdosing and overdosing of factor VIII concentrate should be avoided to minimise risk of perioperative bleeding and treatment costs. We hypothesised that dosing of factor VIII concentrate on the basis of a patient's pharmacokinetic profile instead of bodyweight, which is standard treatment, would reduce factor VIII consumption and improve the accuracy of attained factor VIII levels. Methods In this open-label, multicentre, randomised, controlled trial (OPTI-CLOT), patients were recruited from nine centres in Rotterdam, Groningen, Utrecht, Nijmegen, The Hague, Leiden, Amsterdam, Eindhoven, and Maastricht in The Netherlands. Eligible patients were aged 12 years or older with severe or moderate haemophilia A (severe haemophilia was defined as factor VIII concentrations of Findings Between May 1, 2014, and March 1, 2020, 98 patients were assessed for eligibility and 66 were enrolled in the trial and randomly assigned to the pharmacokinetic-guided treatment group (34 [52%]) or the standard treatment group (32 [48%]). Median age was 49.1 years (IQR 35.0 to 62.1) and all participants were male. No difference was seen in consumption of factor VIII concentrate during the perioperative period between groups (mean consumption of 365 IU/kg [SD 202] in pharmacokinetic-guided treatment group vs 379 IU/kg [202] in standard treatment group; adjusted difference -6 IU/kg [95% CI -88 to 100]). Postoperative bleeding occurred in six (18%) of 34 patients in the pharmacokinetic-guided treatment group and three (9%) of 32 in the standard treatment group. One grade 4 postoperative bleeding event occurred, which was in one (3%) patient in the standard treatment group. No treatment-related deaths occurred. Interpretation Although perioperative pharmacokinetic-guided dosing is safe, it leads to similar perioperative factor VIII consumption when compared with standard treatment. However, pharmacokinetic-guided dosing showed an improvement in obtaining factor VIII concentrations within the desired perioperative factor VIII range. These findings provide support to further investigation of pharmacokinetic-guided dosing in perioperative haemophilia care. Copyright (C) 2021 Elsevier Ltd. All rights reserved

    Peri-operative desmopressin combined with pharmacokinetic-guided factor VIII concentrate in non-severe haemophilia A patients

    Get PDF
    Introduction: Non-severe haemophilia A patient can be treated with desmopressin or factor VIII (FVIII) concentrate. Combining both may reduce factor consumption, but its feasibility and safety has never been investigated. Aim: We assessed the feasibility and safety of combination treatment in nonsevere haemophilia A patients. Methods: Non-severe, desmopressin responsive, haemophilia A patients were included in one of two studies investigating peri-operative combination treatment. In the single-arm DAVID study intravenous desmopressin (0.3 μg/kg) once-a-day was, after sampling, immediately followed by PK-guided FVIII concentrate, for maximally three consecutive days. The Little DAVID study was a randomized trial in patients undergoing a minor medical procedure, whom received either PK-guided combination treatment (intervention arm) or PK-guided FVIII concentrate only (standard arm) up to 2 days. Dose predictions were considered accurate if the absolute difference between predicted and measured FVIII:C was ≤0.2 IU/mL. Results: In total 32 patients (33 procedures) were included. In the DAVID study (n = 21), of the FVIII:C trough levels 73.7% (14/19) were predicted accurately on day 1 (D1), 76.5% (13/17) on D2. On D0, 61.9% (13/21) of peak FVIII:C levels predictions were accurate. In the Little DAVID study (n = 12), on D0 83.3% (5/6) FVIII:C peak levels for both study arms were predicted accurately. Combination treatment reduced preoperative FVIII concentrate use by 47% versus FVIII monotherapy. Desmopressin side effects were mild and transient. Two bleeds occurred, both despite FVIII:C &gt; 1.00 IU/mL. Conclusion: Peri-operative combination treatment with desmopressin and PK-guided FVIII concentrate dosing in nonsevere haemophilia A is feasible, safe and reduces FVIII consumption.</p
    corecore