7 research outputs found

    Interações Planta-polinizador Em Vegetação De Altitude Na Mata Atlântica

    Get PDF
    Tropical high-altitude vegetation is unique due to susceptibility to severe weather conditions in relation to lower formations, and by the peculiarity of its flora with many relictual components. Studies on plant-pollinator interactions in high-altitude rocky outcrops and forests of the Atlantic Forest are scarce, but compilation of information allows us to identify some patterns: low frequency of visits, high floral longevity and generalized pollination system. In tropical mountain ecosystems, the degree of generalization of pollination systems in functional (pollinator groups) and ecological (number of species) terms tends to be high, mainly due to the over-representation of certain plant taxa (e.g., Asteraceae in rocky outcrops and Fabaceae, Myrtaceae, Rubiaceae and Sapindaceae in montane forests). Generalized pollination systems and autogamy may be advantageous for tropical high-altitude plants due to the more severe weather conditions (e.g., low temperature), which decrease abundance and limit the activity of pollinators, resulting in lower visitation frequency. Nevertheless, some well represented groups in forests, such as orchids and plants pollinated by hummingbirds and bats, exemplify cases of higher functional specialization, as well as plants with poricidal anthers pollinated by bees in the high-altitude grasslands. However, in rocky outcrops, for some functional groups of pollinators (e.g., hummingbirds, bats, beetles and hawkmoths), the availability of resources does not allow the maintenance of all species throughout the year, favoring possible local or altitudinal migrations. Thus, rocky outcrops and high-altitude forests constitute a unit in the sense of sustaining the pollinator community. Indeed rocky outcrops and high-altitude forests share an evolutionary history at the regional scale since they passed through similar events of expansion and retraction in response to climate changes in the Quaternary. This could explain the complementarity between the two types of vegetation in the use of floral resources by pollinators. Besides the associations identified here, the ecology and evolution of plant-pollinator interactions in high-altitude vegetation of the Atlantic Forest remain poorly understood, making urgent the development of an integrative research program, as well as projects on issues related to climate change and biodiversity conservation. © 2016, Universidade Federal do Rio de Janeiro (UFRJ). All rights reserved.20272

    Extreme Pollination Mutualisms: Natural History And Evolutionary Trends [mutualismos Extremos De Polinização: História Natural E Tendências Evolutivas]

    No full text
    Mutualistic interactions are spread in all ecossystems and are being increasingly regarded important in creating and maintaining the biodiversity in different environments. Our revision aims to discuss about specialization and evolution in pollination systems in the context of mutualism theory. We illustrate this discussion with four of the most well-studied examples of specialized pollination. The concept of mutualism has changed through history, being nowadays considered as an exploitation relationship with net benefits to all interacting species. In this scenario, the mutualistic interactions can be grouped into two categories: (1) facultative - when there is no exclusive dependence between species; and (2) obligatory - when the interacting species cannot survive outside of the relationship. Some interactions under the obligatory mutualism seem to have high degree of specialization and exclusivity between partners, being called extreme mutualisms. Here, we discuss the following potentially extreme pollination mutualism: (I) long corolla flowers and the hawk moths of Sphingidae family, (II) figs and fig-wasps, (III) yuccas and yucca-moths, and (IV) malesof Euglossini bees and orchids. Then, we discuss the underlying possible evolutionary process leading to the current scenario of such specialized relationships is presented. Although some high specialized species-specific pollination interaction can potently exist, in general, in the discussed exemples, these relationships seem to have evolved under diffuse selection pressure. Such pattern lead to functional group formation that, although highly dependent on the interaction allow its components to vary across time and space. Finally, we suggest that further studies on pollination mutualistic interactions should consider scales (space and time) and the context investigated, which mean whether they are using a taxonomic, functional or evolutionary point of view, or even a combination of them.162297310Ackerman, J.D., Geographic and seasonal variation in fragrance choices and preferences of male Euglossine bees (1989) Biotropica, 21, pp. 340-347. , http://dx.doi.org/10.2307/2388284Agosta, S.J., Janzen, D.H., Body size distributions of large Costa Rican dry forest moths and the underlying relationship between plant and pollinator morphology (2005) Oikos, 108, pp. 183-193. , http://dx.doi.org/10.1111/j.0030-1299.2005.13504.xAgostini, K., Sazima, M., Sazima, I., Bird pollination of explosive flowers while foraging for nectar and caterpillars (2006) Biotropica, 38, pp. 674-678. , http://dx.doi.org/10.1111/j.1744-7429.2006.00191.xBaker, H.G., Ficus and Blastophaga (1961) Evolution, 15, pp. 378-379. , http://dx.doi.org/10.2307/2406236Bascompte, J., Jordano, P., Melián, C.J., Olesen, J.M., The nested assembly of plant-animal mutualistic networks (2003) Proceedings of the National Academy of Science, 100, pp. 9383-9387. , http://dx.doi.org/10.1073/pnas.1633576100Bembé, B., Functional morphology in male euglossine bees and their ability to spray fragrances (Hymenoptera, Apidae, Euglossini) (2004) Apidologie, 35, pp. 283-291. , http://dx.doi.org/10.1051/apido:2004013Bronstein, J.L., Our current understanding of mutualism (1994) The Quarterly Review of Biology, 69, pp. 31-51. , http://dx.doi.org/10.1086/418432Bronstein, J.L., The evolution of facilitation and mutualism (2009) Journal of Ecology, 97, pp. 1160-1170. , http://dx.doi.org/10.1111/j.1365-2745.2009.01566.xCameron, S.A., Phylogeny and biology of neotropical orchid bees (Euglossini) (2004) Annual Review of Entomology, 49, pp. 377-404. , http://dx.doi.org/10.1146/annurev.ento.49.072103.115855Colwell, R.K., Fuentes, E.R., Experimental studies of the niche (1975) Annual Reviews of Ecology and Systematics, 6, pp. 281-310. , http://dx.doi.org/10.1146/annurev.es.06.110175.001433Dale, C., Plague, G.R., Wang, B., Ochman, H., Moran, N.A., Type III secretion systems and the evolution of mutualistic endosymbiosis (2002) Proceedings of the National Academy of Science, 99, pp. 12397-12402. , http://dx.doi.org/10.1073/pnas.182213299Darwin, C., (1862) On the various contrivances by which British and foreign orchids are fenilised by insects, p. 300. , John Murray, LondonDick, C.W., Roubik, D.W., Gruber, K.F., Bermingham, E., Long-distance gene flow and cross-Andean dispersal of lowland rainforest bees (Apidae: Euglossini) revealed by comparative mitochondrial DNA phylogeography (2004) Molecular Ecology, 13, pp. 3775-3785. , http://dx.doi.org/10.1111/j.1365-294X.2004.02374.xDodson, C.H., Frymire, G.P., Natural pollination of orchids (1961) Missouri Botanical Garden Bulletin, 49, pp. 133-152Doebeli, M., Knowlton, N., The evolution of interspecific mutualisms (1998) Proceedings of the National Academy of Sciences of the United States of America, 95, pp. 8676-8680. , http://dx.doi.org/10.1073/pnas.95.15.8676Douglas, A.E., Raven, J.A., Genomes at the Interface between Bacteria and Organelles (2003) Philosophical Transactions of Royal Society of London, B, 358, pp. 5-18. , http://dx.doi.org/10.1098/rstb.2002.1188Dunn, D.W., Segar, S.T., Ridley, J., Chan, R., Crozier, R.H., Yu, D.W., Cook, J.M., A Role for parasites in stabilising the fig-pollinator mutualism (2008) Plos Biology, 6, pp. 490-496. , http://dx.doi.org/10.1371/journal.pbio.0060059Eltz, T., Zimmermann, Y., Haftmann, J., Twele, R., Francke, W., Quezada-Euan, J.J.G., Lunau, K., Enfleurage, lipid recycling and the origin of perfume collection in orchid bees (2007) Proceedings of the Royal Society, 274, pp. 2843-2848. , http://dx.doi.org/10.1098/rspb.2007.0727Faegri, K., Van Der Pijl, L., (1979) The principles of pollination ecology, p. 244. , Pergamon Press, OxfordFerrière, R., Bronstein, J.L., Rinaldi, S., Law, R., Gauduchon, M., Cheating and the evolutionary stability of mutualism (2002) Proceedings of the Royal Society of London, 269, pp. 773-780. , http://dx.doi.org/10.1098/rspb.2001.1900, Series BFoster, K.R., Wenseleers, T., A general model for the evolution of mutualisms (2006) Journal of Evolutionary Biology, 19, pp. 1283-1293. , http://dx.doi.org/10.1111/j.1420-9101.2005.01073.xFrank, S.A., The behaviour and morphology of the fig wasps Pegoscapus assuetus and P. jimenezi: Descriptions and suggested behavioural characters for phylogenetic studies (1984) Psyche, 91, pp. 289-308. , http://dx.doi.org/10.1155/1984/35653Herre, E.A., McHado, C.A., Bermingham, E., Nason, J.D., Windsor, D.M., McCafferty, S.S., Vanhouten, W., Bachmann, K., Molecular phylogenies of figs and their pollinator wasps (1996) Journal of Biogeography, 23, pp. 521-530. , http://dx.doi.org/10.1111/j.1365-2699.1996.tb00014.xHerre, E.A., Knowlton, N., Mueller, U.G., Rehner, S.A., The evolution of mutualisms: Exploiting the paths between conflict and cooperation (1999) Trends in Ecology and Evolution, 14, pp. 49-53. , http://dx.doi.org/10.1016/S0169-5347(98)01529-8Irwin, R.E., Brody, A.K., Waser, N.M., The impact of floral larceny on individuals, populations and communities (2001) Oecologia, 129, pp. 161-168. , http://dx.doi.org/10.1007/s004420100739Jander, K.C., Herre, E.A., Host sanctions and pollinator cheating in the fig tree-fig wasp mutualisms (2010) Proceedings of the Royal Society of London, 277, pp. 1481-1488. , http://dx.doi.org/10.1098/rspb.2009.2157, Series BJohnson, N.C., Graham, J.H., Smith, F.A., Functioning of mycorrhizal associations along the mutualism-parasitism continuum (1997) New Phytologists, 135, pp. 575-586. , http://dx.doi.org/10.1046/j.1469-8137.1997.00729.xKawahara, A.Y., Nishida, K., Davis, D.R., Systematics, host plants, and life histories of three new Phyllocnistis species from the central highlands of Costa Rica (Lepidoptera, Gracillariidae, Phyllocnistinae) (2009) ZooKeys, 27, pp. 7-30. , http://dx.doi.org/10.3897/zookeys.27.250Kjellberg, F., Jousselin, E., Bronstein, J.L., Patel, A., Yokoyama, J., Rasplus, J.Y., Pollination mode in fig wasps: The predictive power of correlated traits (2001) Proceedings of the Royal Society of London. Series B, 268, pp. 1113-1121. , http://dx.doi.org/10.1098/rspb.2001.1633Leimar, O., Axen, A.H., Strategic behaviour in an interspecific mutualism: Interactions between lycaenid larvae and ants (1993) Animal Behaviour, 46, pp. 1177-1182. , http://dx.doi.org/10.1006/anbe.1993.1307Lopez-Vaamonde, C., Niklas, W., Kjer, K.M., Weiblen, G.D., Rasplus, J.Y., McHado, C.A., Cook, J.M., Molecular dating and biogeography of fig-pollinating wasps (2009) Molecular Phylogenetics and Evolution, 52, pp. 715-726. , http://dx.doi.org/10.1016/j.ympev.2009.05.028McHado, C.A., Jousselin, E., Kjellberg, F., Compton, S.G., Herre, E.A., Phylogenetic relationships, historical biogeography and character evolution of fig-pollinating wasps (2001) Proceedings of the Royal Society of London. Series B, 268, pp. 685-694. , http://dx.doi.org/10.1098/rspb.2000.1418McHado, C.A., Robbins, N., Thomas, M., Gilbert, P., Herre, E.A., Critical review of host specificity and its coevolutionary implications in the fig/fig-wasp mutualism (2005) Proceedings of the National Academy of Sciences of the United States of America, 102, pp. 6558-6565. , http://dx.doi.org/10.1073/pnas.0501840102May, R.M., Models for two interacting populations (1973) Theoretical Ecology, pp. 49-70+257. , In: R. M. May (ed.). W. B. Saunders, PhiladelphiaNilsson, L.A., The evolution of flowers with deep corolla tubes (1988) Nature, 334, pp. 147-149. , http://dx.doi.org/10.1038/334147a0Nilsson, L.A., Jonsson, L., Ralison, L., Randrianjohany, E., Angraecoid Orchids and Hawkmoths in Central Madagascar: Specialized Pollination Systems and Generalist Foragers (1987) Biotropica, 19, pp. 310-318. , http://dx.doi.org/10.2307/2388628Pellmyr, O., Pollinating seed eaters: Why is active pollination so rare? (1997) Ecology, 78, pp. 1655-1660. , http://dx.doi.org/10.1890/0012-9658(1997)078[1655:PSEWIA]2.0.CO;2Pellmyr, O., Yuccas, yucca moths, and coevolution: A review (2003) Annals of the Missouri Botanical Garden, 90, pp. 35-55. , http://dx.doi.org/10.2307/3298524Pellmyr, O., Thompson, J.N., Huth, C.J., Non-mutualistic yucca moths and their evolutionary consequences (1996) Nature, 380, pp. 155-156. , http://dx.doi.org/10.1038/380155a0Ramirez, W., Coevolution of Ficus and Agaonidae (1974) Annals of the Missouri Botanical Garden, 61, pp. 770-780. , http://dx.doi.org/10.2307/2395028Ramírez, S.R., Eltz, T., Fujiwara, M.K., Goldman-Huertas, B., Gerlach, G., Tsutsui, N.D., Pierce, N.E., Asynchronous diversification in a specialized plant-pollinator mutualism (2011) Science, 333, pp. 1742-1746. , http://dx.doi.org/10.1126/science.1209175Ricklefs, R.E., (2001) A economia da natureza, p. 542. , 5o edição. Guanabara Koogan, Rio de Janeiro, RJRønsted, N., Weiblen, G.D., Cook, J.M., Salamin, N., McHado, C.A., Savolainen, V., Sixty million years of co-divergence in the fig-wasp symbiosis (2005) Proceedings of the Royal Society of London, 272, pp. 2593-2599. , http://dx.doi.org/10.1098/rspb.2005.3249, Series BThompson, J.N., (2005) The geographic mosaic of coevolution, p. 400. , The Universtity of Chicago Press, Chicago & LondresTremblay, R.L., Ackerman, J.D., Zimmerman, J.K., Calvo, R.N., Variation in sexual reproduction in orchids and its evolutionary consequences: A spasmodic journey to diversification (2005) Biological Journal of the Linnean Society, 84, pp. 1-54. , http://dx.doi.org/10.1111/j.1095-8312.2004.00400.xVan Der Pijl, L., (1982) Principles of dispersal in higher plants, p. 215. , 2a ed. Springer-Verlag, BerlimVogel, S., Parfumsammelnde bienen als bestauber von orchidaceen und Gloxinia (1966) Osterreichische Botanische Zeitschrift, 113, pp. 302-361Wallace, A.R., (1891) Natural selection and tropical nature: Essays on descriptive and theoretical biology, p. 492. , Second edition. Macmillan, LondonWang, R.W., Shi, L., Ai, S.M., Zheng, Q., Trade off between reciprocal mutualists: Local resource availability-oriented interaction in fig/fig wasp mutualism (2008) Journal of Animal Ecology, 77, pp. 616-623. , http://dx.doi.org/10.1111/j.1365-2656.2008.01359.xWang, R., Sun, B., Zheng, Q., Shi, L., Zhu, L., Asymmetric interaction and indeterminate fitness correlation between cooperative partners in the fig-fig wasp mutualism (2011) Journal of the Royal Society, Interface, 8, pp. 1487-1496. , http://dx.doi.org/10.1098/rsif.2011.0063Waser, N.M., Ollerton, J., (2006) Plant-pollinator interactions: From specialization to generalization, p. 445. , First edition. The University of Chicago Press, ChicagoWasserthal, L.T., The pollinators of the malagasy star orchids Angraecum sesquipedale, A. sororium and A. compactum and the evolution of extremely long spurs by pollinator shift (1997) Botanica Acta, 110, pp. 343-359Weiblen, G.D., Phylogenetic relationships of fig wasps pollinating functionally dioecious ficus based on mitochondrial DNA sequences and morphology (2001) Systematic Biology, 50, pp. 243-267. , http://dx.doi.org/10.1093/sysbio/50.2.243Weis, A.E., Frank, S.J., Herbivory tolerance and coevolution: An alternative to the arms race? (2006) New Phytologist, 170, pp. 423-425. , http://dx.doi.org/10.1111/j.1469-8137.2006.01745.xYu, D.W., Ridley, J., Jousselin, E., Herre, E.A., Compton, S.G., Cook, J.M., Moore, J.C., Weiblen, G.D., Oviposition strategies, host coercion and the stable exploitation of figs by wasps (2004) Proceedings of the Royal Society of London, 271, pp. 1185-1195. , http://dx.doi.org/10.1098/rspb.2003.2630, Series BZerega, N.J.C., Clement, W.L., Datwyler, S.L., Weible, G.D., Biogeography and divergence times in the mulberry family (Moraceae) (2005) Molecular Phylogenetics and Evolution, 37, pp. 402-416. , http://dx.doi.org/10.1016/j.ympev.2005.07.004Zimmermann, Y., Roubik, D.W., Eltz, T., Species-specific attraction to pheromonal analogues in orchid bees (2006) Behaviour Ecology and Sociobiology, 60, pp. 833-843. , http://dx.doi.org/10.1007/s00265-006-0227-8Zimmermann, Y., Ramirez, S.R., Eltz, T., Chemical niche differentiation among sympatric species of orchid bees (2009) Ecology, 90, pp. 2994-3008. , http://dx.doi.org/10.1890/08-1858.

    Sophora Tomentosa And Crotalaria Vitellina (fabaceae): Reproductive Biology And Interactions With Bees In The Restinga Of Ubatuba, Sǎo Paulo [sophora Tomentosa E Crotalaria Vitellina (fabaceae): Biologia Reprodutiva E Interações Com Abelhas Na Restinga De Ubatuba, São Paulo]

    No full text
    The study of plant-pollinator interactions is a major tool for conservation biology of fragmented habitats like the Atlantic Rain Forest and for the study of evolutionary traits that rule these interactions. Information on reproductive biology and floral visitor interactions of Sophora tomentosa and Crotalaria vitellina (Fabaceae) is presented in this study. Both species are common in the restinga formation of the Atlantic Rain Forest in the Núcleo Picinguaba, Parque Estadual da Serra do Mar, Ubatuba - São Paulo. These species occur in the same areas, the flowering period is the same for both and they have yellow flowers that offer nectar as the major reward. Both are self-compatible, although fruit and seed set depend on the pollinators. Xylocopa brasilianorum and Megachile sp.1 were pollinators of S. tomentosa, whereas C. vitellina was pollinated by both the aforementioned bees and Bombus morio, Centris labrosa and two separate species of Megachile. All these bees have long tongues and are able to reach nectar at the bottom of the nectar chamber by legitimate visits. The inflorescences of S. tomentosa received more visits (0,62 visits/inflorescence/day) than the inflorescences of C. vitellina (0,37 visits/inflorescence/day). However, the fruit set of S. tomentosa (33%) is similar to that of C. vitellina (42%) in natural conditions, probably due to different pollinator efficiency. Having shorter tongues, Trigona and Augochlora bees have no access to the nectar chamber by means of legitimate visits. Hence, the dimensions of the nectar chamber of S. tomentosa and C. vitellina act as a selective barrier to short-tongued bees, thus guaranteeing more nectar to the long-tongued visitors. These legume pollinators are very common in the restinga forest, and they act as pollen vectors of other species in this ecosystem as well. The preservation of these legume plants is important to the diversity of bees and essential to the plant community.101185192Alves-Dos-Santos, I., Comunidade, conservação e manejo: O caso dos polinizadores (2003) Rev. Tecnol. Ambient, 8 (2), pp. 35-57Agostini, K., Sazima, M., Sazima, I., Bird pollination of explosive flowers while foraging for nectar and caterpillars (2006) Biotropica, 38 (5), pp. 674-678Arroyo, M.T.K., Breeding systems and pollination biology in Leguminosae (1981) Advances in Legume Systematics: Part 2, pp. 723-769. , R.M. Polhill & P.H. Raven, eds). Royal Botanic Garden, KewBatalha, M.A., Mantovani, W., Reproductive phenological patterns of Cerrado plant species at the Pé-de-Gigante Reserve (Santa Rita do Passa Quatro, SP, Brazil): A comparison between the herbaceous and woody floras (2000) Rev. Bras. Biol, 60 (1), pp. 129-145Bencke, C.C., Morellato, P.L.C., Comparação de dois métodos de avaliação da fenologia de plantas, sua interpretação e representação (2002) Rev. Bras. Bot, 25 (3), pp. 269-275Bernardello, G., Aguilar, R., Anderson, G.F., The reproductive biology of Sophora fernandeziana (Leguminosae), a vulnerable endemic species from Isla Robinson Crusoe (2004) Am. J. Bot, 91 (2), pp. 198-206Carvalho, D.A., Oliveira, P.E., Biologia reprodutiva e polinização de Senna sylvestris (Vell.) Irwin & Barneby (Leguminosae, Caesalpinioideae) (2003) Rev. Bras. Bot, 26 (3), pp. 319-328Chalcoff, V.R., Aizen, M.A., Galetto, L., Nectar concentration and composition of 26 species from the temperate forest of South America (2006) Ann. Bot, 97 (3), pp. 413-421Dafni, A., (1992) Pollination Ecology: A Practical Approach, , Oxford University Press, OxfordEndress, P.K., (1994) Diversity and Evolutionary Biology of Tropical Fkowers, , Cambridge University Press, CambridgeEtcheverry, A.V., Protomastro, J.J., Westerkamp, C., Delayed autonomous self-pollination in the colonizer Crotalaria micans (Fabaceae, Papilionoideae): Structural and functional aspects (2003) Plant Syst. Evol, 239 (1-2), pp. 15-28Faegri, K., van der Pijl, V., The principles of pollination ecology (1979), Pergamon Press, OxfordFree, J.B., (1970) Insect Pollination of Crops, , Academic Press, New YorkFreitas, C.V., Oliveira, P.E., Biologia reprodutiva de Copaifera langsdorffii Desf. (Leguminosae-Caesalpinioideae) (2002) Rev. Bras. Bot, 25 (3), pp. 311-321Galetto, L., Bernardello, G., Rewards in flowers: Néctar (2005) Practical Pollination Biology, pp. 261-313. , (A. Dafni, P.G. Kevan & B.C. Husband, eds). Enviroquest, OntarioGhazoul, J., Floral diversity and the facilitation of pollination (2006) J. Ecol, 94 (2), pp. 295-304Geber, M.A., The relationship of plant size to self-pollination on Mertensia ciliata (1985) Ecology, 66 (3), pp. 762-772Gibbs, P.E., Lewis, G.P., Lughadha, E.N., Fruit-set induced changes in the sex of flowers in Caesalpinia calycina (Leguminosae) (1999) Plant Biol, 1 (6), pp. 665-669Gibbs, P.E., Oliveira, P.E., Bianchi, M.B., Postzygotic control of selfing in Hymenaea stigonocarpa (Leguminosae - Caesalpinioideae), a bat-pollinated tree of the Brazilian cerrados (1999) Int. J. Plant Science, 160 (1), pp. 72-78Gibbs, P.E., Sassaki, R., Reproductive biology of Dalbergia miscolobium Benth. (Leguminosae-Papilionoideae) in SE Brazil: The effects of pistillate sorting on fruit-set (1998) Ann. Bot, 81 (6), pp. 735-740Jacobi, M.C., Ramalho, M., Silva, M., Pollination biology of the exotic rattleweed Crotalaria retusa L. (Fabaceae) in NE Brazil (2005) Biotropica, 37 (3), pp. 357-363Judd, W.S., Campbell, C.S., Kellogg, E.A., Stevens, P.F., Donoghue, M.J., (2009) Sistemática Vegetal: Um Enfoque Filogenético, , Artmed, Porto AlegreKearns, C.A., Inouye, D.W., Waser, N.M., Endangered mutualisms: The conservation of plant-pollinator interactions (1998) Ann. Rev. Ecol. Syst, 29, pp. 83-112Lewis, G.P., Gibbs, P.E., Reproductive biology of Caesalpinia calycina and C. pluviosa (Leguminosae) of the caatinga of NE Brazil (1999) Plant Syst. Evol, 217 (1-2), pp. 43-53Lima, H.C., (2000) Leguminosas Arbóreas Da Mata Atlântica: Uma Análise Da Riqueza, , Padrões De Distribuição Geográfica E Similiaridades Florísticas Em Remanescentes Florestais Do Estado Do Rio De Janeiro. Tese de Doutorado, Universidade Federal do Rio de Janeiro, Rio de JaneiroLopes, A.V., Machado, I.C., Biologia floral de Swartzia pickelii (Leguminosae - Papilionoideae e sua polinização por Eulaema spp. (Apidae-Euglossini) (1996) Rev. Bras. Bot, 19 (1), pp. 17-24Machado, I.C., Sazima, M., Pollination and breeding system of Melochia tomentosa L. (Malvales), a keystone floral resource in the Caatinga: The role of Apis mellifera and autochthonous pollinators in fruit set (2008) Flora, 203 (6), pp. 484-490Martin, F.W., Staining and observing pollen tubes in the style by means of fluorescence (1959) Stain Technol, 34 (3), pp. 125-128Mitchell, R.J., Karron, J.D., Holmquist, K.G., Bell, J.M., The influence of Mimulus ringens floral display size on pollinator visitation (2004) Func. Ecol, 18 (1), pp. 116-124Morellato, L.P.C., Talora, D.C., Takahasi, A., Bencke, C.S.C., Romera, E.C., Zipparro, V., Phenology of Atlantic rain forest trees: A comparative study (2000) Biotropica, 32 (4), pp. 811-823Newstrom, L.E., Frankie, G.W., Baker, H.G., A new classification for plant phenology based on flowering patterns in lowland Tropical Rain Forest trees at La Selva (1994) Costa Rica. Biotropica, 26 (2), pp. 141-159Nogueira, E.M.L., Arruda, V.L.V., Fenologia reprodutiva, polinização e sistema reprodutivo de Sophora tomentosa L. (Leguminosae - Papilionoideae) em restinga da praia da Joaquina, Florianópolis, sul do Brasil (2006) Biotemas, 19 (2), pp. 29-36Opler, P., Nectar production in a tropical ecosystem (1983) The Biology of Nectaries, pp. 30-79. , (B. Bentley & T.S. Elias, eds). Columbia University Press, New YorkDe Prata, P.A.J.P.A., Freitas, L., Reproductive biology of two tree species of Leguminosae in a Montane Rain Forest in southeastern Brazil (2008) Flora, 203, pp. 491-498Pansarin, L.M., Pansarin, E.R., Sazima, M., Reproductive biology of Cyrtopodium polyphyllum (Orchidaceae): A Cyrtopodiinae pollinated by deceit (2008) Plant Biol, 10 (5), pp. 650-659Pellmyr, O., Pollination by animals (2002) Plant-animal Interactions An Evolutionary Approach, pp. 157-184. , C.M. Herrera & O. Pellmyr, eds) Blackwell Publishing, OxfordPennington, R.T., Stirton, C.H., Schrire, B.D., Tribe Sophoreae (2005) Legumes of the World, pp. 227-249. , G. Lewis, B.D. Schrire, B. Mackinder & M. Lock, eds). Royal Botanic Gardens, KewPinheiro, M., Sazima, M., Visitantes florais e polinizadores de seis espécies arbóreas de Leguminosae melitófilas na Mata Atlântica no Sudeste do Brasil (2007) Rev. Bras. Biociênc, 5 (1), pp. 447-449Price, P.W., Species interactions and the evolution of biodiversity (2002) Plant-animal Interactions An Evolutionary Approach, pp. 157-184. , C.M. Herrera & O. Pellmyr, eds) Blackwell Publishing, OxfordPyke, G.H., Waser, N.M., The production of diluted nectar by hummingbird and honeyeater flowers (1981) Biotropica, 13, pp. 260-270Radford, A.E., Dickinson, W.C., Massey, J.R., Bell, C.R., (1974) Vascular Plant Systematics, , Harper & Row, New YorkRathcke, B., Lacey, E.P., Phenological patterns of terrestrial plants (1985) Annu. Rev. Ecol. Syst, 16 (2), pp. 179-214Romera, E.C., (1999) Estudo Fenológico Em Vegetação De Duna Do Sudeste Do Brasil, , Dissertação de Mestrado, Universidade Estadual Paulista Júlio de Mesquita Filho, Rio ClaroSazima, I., Sazima, M., Mamangavas e irapuás (Hymenoptera, Apoidea): Visitas, interações e conseqüências para a polinização do maracujá (Passifloraceae) (1989) Rev. Bras. Entomol, 33 (1), pp. 109-118Sakai, S., Kato, M., Inoue, T., Three pollination guilds and variation in floral characteristics of Bornean gingers (Zingiberaceae and Costaceae) (1999) Am. J. Bot, 86 (5), pp. 646-658Sprent, J.I., (2001) Nodulation in Legumes, , Royal Botanic Gardens, KewTorres, C., Galetto, L., Patterns and implications of floral nectar secretion, chemical composition, removal effects and standing crop in Mandevilla pentlandiana (Apocynaceae) (1998) Bot. J. Linn. Soc, 127 (3), pp. 207-223van Wyk, B.E., Tribe Crotalarieae (2005) Legumes of the World, pp. 273-281. , G. Lewis, B.D. Schrire, B. Mackinder & M. Lock, eds). Royal Botanic Gardens, KewWesterkamp, C., Keel blossoms: Bee flowers with adaptations against bees (1997) Flora, 192 (2), pp. 125-132Westerkamp, C., Ricochet pollination in cassias and how bees explain enantiostyly. Preliminary communication (2004) Solitary Bees: Conservation, Rearing and Management for Pollination, , (B.M. Freitas & J.O.P. Pereira, eds). MMA, FortalezaZimmerman, M., Pollination biology of montane plants: Relationship between rate of nectar production and standing crop (1988) Am. Mid. Natur, 120 (1), pp. 50-5

    Plantas, polinizadores e algumas articulações da biologia da polinização com a teoria ecológica

    No full text
    corecore