342 research outputs found

    Microbiota of Deciduous Endodontic Infections Analyzed by MDA and Checkerboard DNA-DNA Hybridization

    Get PDF
    Aims To evaluate the microbiota of endodontic infections in deciduous teeth by checkerboard DNA-DNA hybridization after uniform amplification of DNA in samples by multiple displacement amplification (MDA). Methodology Forty samples from the root canal system of deciduous teeth exhibiting pulp necrosis with or without radiographically detectable periradicular/interadicular bone resorption were collected and 32 were analyzed, with 3 individuals contributing 2 samples; these were MDA- amplified and analyzed by Checkerboard DNA-DNA hybridization for levels of 83 bacterial taxa. Two outcome measures were used: the percentage of teeth colonized by each species; and the mean proportion of each bacterial taxon present across all samples were computed. Results The mean amount of DNA in the samples prior to amplification was 5.2 (± 4.7) ng and 6.1 (± 2.3) ÎŒg after MDA. The mean number of species detected per sample was 19 (± 4) (range: 3–66) to the nearest whole number. The most prevalent taxa were Prevotella intermedia (96.9%), Neisseria mucosa (65.6%), Prevotella nigrescens (56.2%) and Tannerella forsythia (56.2%). Aggregatibacter (Haemophilus) aphrophilus and Helicobacter pylori were not detected. P. intermedia (10%), Prevotella tannerae (7%) and Prevotella nigrescens (4.3%) presented the highest mean proportions of the target species averaged across the positive samples. Conclusion Root canals of infected deciduous teeth had a diverse bacterial population. Prevotella sp were commonly found with P. intermedia, Prevotella tannerae and Prevotella nigrescens among the most prominent species detected

    Regularization Independent Analysis of the Origin of Two Loop Contributions to N=1 Super Yang-Mills Beta Function

    Full text link
    We present a both ultraviolet and infrared regularization independent analysis in a symmetry preserving framework for the N=1 Super Yang-Mills beta function to two loop order. We show explicitly that off-shell infrared divergences as well as the overall two loop ultraviolet divergence cancel out whilst the beta function receives contributions of infrared modes.Comment: 7 pages, 2 figures, typos correcte

    Ordering and Fluctuation of Orbital and Lattice Distortion in Perovskite Manganese Oxides

    Full text link
    Roles of orbital and lattice degrees of freedom in strongly correlated systems are investigated to understand electronic properties of perovskite Mn oxides such as La_{1-x}Sr_{x}MnO_{3}. An extended double-exchange model containing Coulomb interaction, doubly degenerate orbitals and Jahn-Teller coupling is derived under full polarization of spins with two-dimensional anisotropy. Quantum fluctuation effects of Coulomb interaction and orbital degrees of freedom are investigated by using the quantum Monte Carlo method. In undoped states, it is crucial to consider both the Coulomb interaction and the Jahn-Teller coupling in reproducing characteristic hierarchy of energy scales among charge, orbital-lattice and spin degrees of freedom in experiments. Our numerical results quantitatively reproduce the charge gap amplitude as well as the stabilization energy and the amplitude of the cooperative Jahn-Teller distortion in undoped compounds. Upon doping of carriers, in the absence of the Jahn-Teller distortion, critical enhancement of both charge compressibility and orbital correlation length is found with decreasing doping concentration. These are discussed as origins of strong incoherence in charge dynamics. With the Jahn-Teller coupling in the doped region, collapse of the Jahn-Teller distortion and instability to phase separation are obtained and favorably compared with experiments. These provide a possible way to understand the complicated properties of lightly doped manganites.Comment: 22 pages RevTeX including 25 PS figures, submitted to Phys.Rev.B, replaced version; two figures are replaced by Fig.17 with minor changes in the tex

    Characterization of potential CO2 emissions in agricultural areas using magnetic susceptibility

    Full text link
    ABSTRACTSoil CO2 emissions (fCO2) in agricultural areas have been widely studied in global climate change research, but its characterization and quantification are restricted to small areas. Because spatial and time variability affect emissions, tools need to be developed to predict fCO2 for large areas. This study aimed to investigate soil magnetic susceptibility (MS) and its correlation with fCO2 in an agricultural environment. The experiment was carried out on a Typic Eutrudox located in Guariba-SP, Brazil. Results showed that there was negative spatial correlation between fCO2 and the magnetic susceptibility of Air Dried Soil (MSADS) up to 34.3 m distant. However, the fCO2 had no significant correlation with MSADS, magnetic susceptibility of sand (MSSAND) nor clay (MSCLAY). However, MSADS could be a supplemental mean of identifying regions of high fCO2 potential over large areas
    • 

    corecore