20 research outputs found
Hantavirus in African Wood Mouse, Guinea
Hantaviruses are rodentborne, emerging viruses that cause life-threatening human diseases in Eurasia and the Americas. We detected hantavirus genome sequences in an African wood mouse (Hylomyscus simus) captured in Sangassou, Guinea. Sequence and phylogenetic analyses of the genetic material demonstrate a novel hantavirus species, which we propose to name "Sangassou virus.
Dobrava-Belgrade Hantavirus from Germany Shows Receptor Usage and Innate Immunity Induction Consistent with the Pathogenicity of the Virus in Humans
BACKGROUND: Dobrava-Belgrade virus (DOBV) is a European hantavirus causing hemorrhagic fever with renal syndrome (HFRS) in humans with fatality rates of up to 12%. DOBV-associated clinical cases typically occur also in the northern part of Germany where the virus is carried by the striped field mouse (Apodemus agrarius). However, the causative agent responsible for human illness has not been previously isolated. METHODOLOGY/PRINCIPAL FINDINGS: Here we report on characterization of a novel cell culture isolate from Germany obtained from a lung tissue of "spillover" infected yellow necked mouse (A. flavicollis) trapped near the city of Greifswald. Phylogenetic analyses demonstrated close clustering of the new strain, designated Greifswald/Aa (GRW/Aa) with the nucleotide sequence obtained from a northern German HFRS patient. The virus was effectively blocked by specific antibodies directed against β3 integrins and Decay Accelerating Factor (DAF) indicating that the virus uses same receptors as the highly pathogenic Hantaan virus (HTNV). In addition, activation of selected innate immunity markers as interferon β and λ and antiviral protein MxA after viral infection of A549 cells was investigated and showed that the virus modulates the first-line antiviral response in a similar way as HTNV. CONCLUSIONS/SIGNIFICANCE: In summary, our study reveals novel data on DOBV receptor usage and innate immunity induction in relationship to virus pathogenicity and underlines the potency of German DOBV strains to act as human pathogen
Molecular and epidemiological characteristics of human Puumala and Dobrava-Belgrade hantavirus infections, Germany, 2001 to 2017
Introduction
Two hantavirus species, Puumala (PUUV) and Dobrava-Belgrade (DOBV) virus (genotype Kurkino), are endemic in Germany. Recent PUUV outbreaks raised questions concerning increasing frequency of outbreaks and expansion of PUUV endemic areas.
Aims
To describe the epidemiology of human PUUV and DOBV infections in Germany.
Methods
We conducted an observational retrospective study analysing national hantavirus surveillance data notified to the national public health institute and hantavirus nucleotide sequences from patients collected at the national consultation laboratory between 2001 and 2017. Matching molecular sequences with surveillance data, we conducted epidemiological, phylogenetic and phylogeographic analyses.
Results
In total, 12,148 cases of symptomatic hantavirus infection were notified 2001–17 (mean annual incidence: 0.87/100,000; range: 0.09–3.51). PUUV infections showed a highly variable space-time disease incidence pattern, causing large outbreaks every 2–3 years with peaks in early summer and up to 3,000 annually reported cases. Sex-specific differences in disease presentation were observed. Of 202 PUUV nucleotide sequences obtained from cases, 189 (93.6%) fall into well-supported phylogenetic clusters corresponding to different endemic areas in Germany. DOBV infections caused few, mostly sporadic cases in autumn and winter in the north and east of Germany.
Conclusions
The frequency of PUUV outbreaks increased between 2001 and 2017 but our data does not support the suggested expansion of endemic areas. The epidemiology of PUUV and DOBV-Kurkino infections differs in several aspects. Moreover, the latter are relatively rare and combining efforts and data of several countries to identify risk factors and develop specific recommendations for prevention could be worthwhile.Peer Reviewe
First Molecular Identification of Human Dobrava Virus Infection in Central Europe
Viral RNA was amplified by reverse transcription-PCR from a patient suffering from hemorrhagic fever with renal syndrome (HFRS) in Germany. The virus strain could be assigned to the Dobrava hantavirus (DOBV). This is the first molecular identification of human infection by DOBV in central Europe and the first proof that a virus strain related to the DOBV-Aa lineage, carried by Apodemus agrarius rodents, is able to cause HFRS
Molecular Diagnostics of Hemorrhagic Fever with Renal Syndrome during a Dobrava Virus Infection Outbreak in the European Part of Russia ▿
A large outbreak of hemorrhagic fever with renal syndrome (HFRS) occurred in the winter of 2006-2007 in a region southeast of Moscow in Central European Russia. Of the 422 patients with HFRS investigated in this study, 58 patients were found to be infected by Puumala virus, whereas as many as 364 were infected by Dobrava-Belgrade virus (DOBV). Early serum samples from 10 DOBV-infected patients were used for nucleic acid amplification, which was successful for 5 patients. Molecular analyses demonstrated that the causative hantavirus belongs to the DOBV-Aa genetic lineage, which is carried by the striped field mouse (Apodemus agrarius) as the natural reservoir host. Neutralization assays with convalescent-phase sera from these patients confirmed infection by DOBV-Aa; related viruses, such as the Dobrava-Slovenia virus (DOBV-Af) and the Dobrava-Sochi virus (DOBV-Ap), were neutralized at lower efficiencies. The clinical courses of the 205 patients enrolled in the study were found to be mostly mild to moderate; however, an unexpectedly high fraction (27%) of patients exhibited severe illness. One patient died from kidney failure and showed symptoms of generalized subcutaneous hemorrhage. The results provide molecular, serodiagnostic, and clinical evidence that DOBV-Aa is a common pathogen in East Europe that causes large outbreaks of HFRS
Hantavirus Disease Outbreak in Germany: Limitations of Routine Serological Diagnostics and Clustering of Virus Sequences of Human and Rodent Origin▿
In Europe, hemorrhagic fever with renal syndrome results mainly from infection with Puumala virus (PUUV) or Dobrava virus. For 31 patients from a hantavirus disease outbreak in Lower Bavaria, a district in southeast Germany, serodiagnosis was undertaken by enzyme-linked immunosorbent assay, immunofluorescence assay, and immunoblot analysis. In a few of these cases, however, PUUV-specific typing of antibodies by these standard assays failed and a virus neutralization assay under biosafety level 3 conditions was required to verify the infection by this virus type. PUUV RNA was amplified by reverse transcription-PCR from acute-phase sera of three patients and was found to be very closely related to virus sequences obtained from bank voles (Clethrionomys glareolus) trapped in the same area. These findings link the outbreak with a novel PUUV lineage, “Bavaria,” circulating in the local rodent population. The Bavaria lineage associated with the outbreak is only distantly related to other PUUV lineages from Germany
Determination of DOBV GRW/Aa receptor usage by receptor blocking assays (A–C) and receptor binding experiment (D).
<p>Vero E6 cells were treated with 40 µg/ml of indicated blocking antibodies for 1 hour. Then virus at multiplicity of infection 0.05 was added to the cells. After one hour cells were washed and new medium was added. One day later samples were collected. <b>A</b>) Viral S-segment RNA was measured by qPCR. <b>B</b>) Expression of viral nucleocapsid (N) protein was detected by Western blot. The density of bands on blots was quantified by ImageJ 1.41o programm (Wayne Rasband National Institutes of Health, USA). The percentages of antibody-mediated inhibition of viral infection were calculated in comparison to untreated but infected cells. Experiment was performed three times. Data are presented as the mean ± SD of the mean. <b>C</b>) Representative picture of the Western blot analyses summarized in part B. —, untreated cells; β1, cells pre-treated with β1 integrin specific monoclonal antibody (MAb); β3, cells pre-treated with β3 integrin specific MAb; DAF, cells pre-treated with DAF specific MAb. <b>D</b>) Binding of GRW/Aa to CHO cells stably expressing β3 integrins (CHO-β3cells) in comparison to control CHO cells. Virus binding was performed at 4°C for 1 hour. HTNV and PHV were used as controls. The amount of bound virus was measured through detection of viral RNA by specific qPCR. The binding affinity of virus particles to CHO-β3 cells is expressed as a ratio between virus genome equivalents detected on CHO-β3 cells and on the control CHO cells. Error bars represent standard deviations of the means from three experiments.</p