2 research outputs found

    Genetic variants influencing biomarkers of nutrition are not associated with cognitive capability in middle-aged and older adults

    Get PDF
    Several investigations have observed positive associations between good nutritional status, as indicated by micronutrients, and cognitive measures; however, these associations may not be causal. Genetic polymorphisms that affect nutritional biomarkers may be useful for providing evidence for associations between micronutrients and cognitive measures. As part of the Healthy Ageing across the Life Course (HALCyon) program, men and women aged between 44 and 90 y from 6 UK cohorts were genotyped for polymorphisms associated with circulating concentrations of iron [rs4820268 transmembrane protease, serine 6 (TMPRSS6) and rs1800562 hemochromatosis (HFE)], vitamin B-12 [(rs492602 fucosyltransferase 2 (FUT2)], vitamin D ([rs2282679 group-specific component (GC)] and β-carotene ([rs6564851 beta-carotene 15,15'-monooxygenase 1 (BCMO1)]. Meta-analysis was used to pool within-study effects of the associations between these polymorphisms and the following measures of cognitive capability: word recall, phonemic fluency, semantic fluency, and search speed. Among the several statistical tests conducted, we found little evidence for associations. We found the minor allele of rs1800562 was associated with poorer word recall scores [pooled β on Z-score for carriers vs. noncarriers: -0.05 (95% CI: -0.09, -0.004); P = 0.03, n = 14,105] and poorer word recall scores for the vitamin D-raising allele of rs2282679 [pooled β per T allele: -0.03 (95% CI: -0.05, -0.003); P = 0.03, n = 16,527]. However, there was no evidence for other associations. Our findings provide little evidence to support associations between these genotypes and cognitive capability in older adults. Further investigations are required to elucidate whether the previous positive associations from observational studies between circulating measures of these micronutrients and cognitive performance are due to confounding and reverse causality

    Dietary supplements and risk of cause-specific death, cardiovascular disease, and cancer: a protocol for a systematic review and network meta-analysis of primary prevention trials

    No full text
    Background: In the Western world, dietary supplements are commonly used to prevent chronic diseases, mainly cardiovascular disease and cancer. However, there is inconsistent evidence on which dietary supplements actually lower risk of chronic disease, and some may even increase risk. We aim to evaluate the comparative safety and/or effectiveness of dietary supplements for the prevention of mortality (all-cause, cardiovascular, and cancer) and cardiovascular and cancer incidence in primary prevention trials. Methods/Design: We will search PubMed, EMBASE, Cochrane Database of Systematic Reviews, the Database of Abstracts of Reviews of Effects, the Cochrane Central Register of Controlled Trials, clinical trials.gov, and the World Health Organization International Trial Registry Platform. Randomized controlled trials will be included if they meet the following criteria: (1) minimum intervention period of 12 months; (2) primary prevention of chronic disease (is concerned with preventing the onset of diseases and conditions); (3) minimum mean age ≥18 years (maximum mean age 70 years); (4) intervention(s) include vitamins (beta-carotene, vitamin A, B vitamins, Vitamin C, Vitamin D, Vitamin E, and multivitamin supplements); fatty acids (omega-3 fatty acids, omega-6 fatty acids, monounsaturated fat); minerals (magnesium, calcium, selenium, potassium, iron, zinc, copper, iodine; multiminerals); supplements containing combinations of both vitamins and minerals; protein (amino acids); fiber; prebiotics; probiotics; synbiotics; (5) supplements are orally administered as liquids, pills, capsules, tablets, drops, ampoules, or powder; (6) report results on all-cause mortality (primary outcome) and/or mortality from cardiovascular disease or cancer, cardiovascular and/or cancer incidence (secondary outcomes). Pooled effects across studies will be calculated using Bayesian random effects network meta-analysis. Sensitivity analysis will be performed for trials lasting ≥5 years, trials with low risk of bias, trials in elderly people (≥65 years), ethnicity, geographical region, and trials in men and women. The results of the corresponding fixed effects models will also be compared in sensitivity analyses. Discussion: This is a presentation of the study protocol only. Results and conclusions are pending completion of this study. Our systematic review will be of great value to consumers of supplements, healthcare providers, and policy-makers, regarding the use of dietary supplements
    corecore