374 research outputs found

    Végétations nitrophiles

    Get PDF

    Les forêts alluviales

    Get PDF

    Phytosociologie et foresterie

    Get PDF

    Description of klebsiella spallanzanii sp. Nov. and of klebsiella pasteurii sp. nov

    Get PDF
    Klebsiella oxytoca causes opportunistic human infections and post-antibiotic haemorrhagic diarrhoea. This Enterobacteriaceae species is genetically heterogeneous and is currently subdivided into seven phylogroups (Ko1 to Ko4, Ko6 to Ko8). Here we investigated the taxonomic status of phylogroups Ko3 and Ko4. Genomic sequence-based phylogenetic analyses demonstrate that Ko3 and Ko4 formed well-defined sequence clusters related to, but distinct from, Klebsiella michiganensis (Ko1), Klebsiella oxytoca (Ko2), K. huaxiensis (Ko8) and K. grimontii (Ko6). The average nucleotide identity of Ko3 and Ko4 were 90.7% with K. huaxiensis and 95.5% with K. grimontii, respectively. In addition, three strains of K. huaxiensis, a species so far described based on a single strain from a urinary tract infection patient in China, were isolated from cattle and human faeces. Biochemical and MALDI-ToF mass spectrometry analysis allowed differentiating Ko3, Ko4 and Ko8 from the other K. oxytoca species. Based on these results, we propose the names Klebsiella spallanzanii for the Ko3 phylogroup, with SPARK_775_C1T (CIP 111695T, DSM 109531T) as type strain, and Klebsiella pasteurii for Ko4, with SPARK_836_C1T (CIP 111696T, DSM 109530T) as type strain. Strains of K. spallanzanii were isolated from human urine, cow faeces and farm surfaces, while strains of K. pasteurii were found in faecal carriage from humans, cows and turtles

    Indeterminate Pulmonary Nodules at Diagnosis in Rhabdomyosarcoma: Are They Clinically Significant? A Report From the European Paediatric Soft Tissue Sarcoma Study Group

    Get PDF
    PURPOSE: To evaluate the clinical significance of indeterminate pulmonary nodules at diagnosis (defined as ≤ 4 pulmonary nodules < 5 mm or 1 nodule measuring ≥ 5 and < 10 mm) in patients with pediatric rhabdomyosarcoma (RMS). PATIENTS AND METHODS: We selected patients with supposed nonmetastatic RMS treated in large pediatric oncology centers in the United Kingdom, France, Italy, and the Netherlands, who were enrolled in the European Soft Tissue Sarcoma Study Group (E pSSG) RMS 2005 study. Patients included in the current study received a diagnosis between September 2005 and December 2013, and had chest computed tomography scans available for review that were done at time of diagnosis. Local radiologists were asked to review the chest computed tomography scans for the presence of pulmonary nodules and to record their findings on a standardized case report form. In the E pSSG RMS 2005 Study, patients with indeterminate pulmonary nodules were treated identically to patients without pulmonary nodules, enabling us to compare event-free survival and overall survival between groups by log-rank test. RESULTS: In total, 316 patients were included; 67 patients (21.2%) had indeterminate pulmonary nodules on imaging and 249 patients (78.8%) had no pulmonary nodules evident at diagnosis. Median follow-up for survivors (n = 258) was 75.1 months; respective 5-year event-free survival and overall survival rates (95% CI) were 77.0% (64.8% to 85.5%) and 82.0% (69.7% to 89.6%) for patients with indeterminate nodules and 73.2% (67.1% to 78.3%) and 80.8% (75.1% to 85.3%) for patients without nodules at diagnosis ( P = .68 and .76, respectively). CONCLUSION: Our study demonstrated that indeterminate pulmonary nodules at diagnosis do not affect outcome in patients with otherwise localized RMS. There is no need to biopsy or upstage patients with RMS who have indeterminate pulmonary nodules at diagnosis

    The Population Structure of Acinetobacter baumannii: Expanding Multiresistant Clones from an Ancestral Susceptible Genetic Pool

    Get PDF
    Outbreaks of hospital infections caused by multidrug resistant Acinetobacter baumannii strains are of increasing concern worldwide. Although it has been reported that particular outbreak strains are geographically widespread, little is known about the diversity and phylogenetic relatedness of A. baumannii clonal groups. Sequencing of internal portions of seven housekeeping genes (total 2,976 nt) was performed in 154 A. baumannii strains covering the breadth of known diversity and including representatives of previously recognized international clones, and in 19 representatives of other Acinetobacter species. Restricted amounts of diversity and a star-like phylogeny reveal that A. baumannii is a genetically compact species that suffered a severe bottleneck in the recent past, possibly linked to a restricted ecological niche. A. baumannii is neatly demarcated from its closest relative (genomic species 13TU) and other Acinetobacter species. Multilocus sequence typing analysis demonstrated that the previously recognized international clones I to III correspond to three clonal complexes, each made of a central, predominant genotype and few single locus variants, a hallmark of recent clonal expansion. Whereas antimicrobial resistance was almost universal among isolates of these and a novel international clone (ST15), isolates of the other genotypes were mostly susceptible. This dichotomy indicates that antimicrobial resistance is a major selective advantage that drives the ongoing rapid clonal expansion of these highly problematic agents of nosocomial infections

    Analyses of 32 Loci Clarify Phylogenetic Relationships among Trypanosoma cruzi Lineages and Support a Single Hybridization prior to Human Contact

    Get PDF
    Trypanosoma cruzi is the protozoan parasite that causes Chagas disease, a major health problem in Latin America. The genetic diversity of this parasite has been traditionally divided in two major groups: T. cruzi I and II, which can be further divided in six major genetic subdivisions (subgroups TcI-TcVI). T. cruzi I and II seem to differ in important biological characteristics, and are thought to represent a natural division relevant for epidemiological studies and development of prophylaxis. Having a correct reconstruction of the evolutionary history of T. cruzi is essential for understanding the potential connection between the genetic and phenotypic variability of T. cruzi with the different manifestations of Chagas disease. Here we present results from a comprehensive phylogenetic analysis of T. cruzi using more than 26 Kb of aligned sequence data. We show strong evidence that T. cruzi II (TcII-VI) is not a natural evolutionary group but a paraphyletic lineage and that all major lineages of T. cruzi evolved recently (<3 million years ago [mya]). Furthermore, the sequence data is consistent with one major hybridization event having occurred in this species recently (< 1 mya) but well before T. cruzi entered in contact with humans in South America
    corecore