404 research outputs found

    Light polarization oscillations induced by photon-photon scattering

    Full text link
    We consider the Heisenberg-Euler action for an electromagnetic field in vacuum, which includes quantum corrections to the Maxwell equations induced by photon-photon scattering. We show that, in some configurations, the plane monochromatic waves become unstable, due to the appearance of secularities in the dynamical equations. These secularities can be treated using a multiscale approach, introducing a slow time variable. The amplitudes of the plane electromagnetic waves satisfy a system of ordinary differential nonlinear equations in the slow time. The analysis of this system shows that, due to the effect of photon-photon scattering, in the unstable configurations the electromagnetic waves oscillate periodically between left-hand-sided and right-hand-sided polarizations. Finally, we discuss the physical implications of this finding, and the possibility of disclosing traces of this effect in optical experiments.Comment: Version published in PRA, some typos correcte

    Nonlinear stability of Minkowski spacetime in Nonlocal Gravity

    Full text link
    We prove that the Minkowski spacetime is stable at nonlinear level and to all perturbative orders in the gravitational perturbation in a general class of nonlocal gravitational theories that are unitary and finite at quantum level

    Collective behavior of light in vacuum

    Full text link
    Under the action of light-by-light scattering, light beams show collective behaviors in vacuum. For instance, in the case of two counterpropagating laser beams with specific initial helicity, the polarization of each beam oscillates periodically between the left and right helicity. Furthermore, the amplitudes and the corresponding intensities of each polarization propagate like waves. Such polarization waves might be observationally accessible in future laser experiments, in a physical regime complementary to those explored by particle accelerators.Comment: Version published in Phys. Rev. A. arXiv admin note: text overlap with arXiv:1710.0333

    Interaction effects on atomic laboratory trapped Bose-Einstein condensates

    Full text link
    We discuss the effect of inter-atoms interactions on the condensation temperature TcT_c of an atomic laboratory trapped Bose-Einstein condensate. We show that, in the mean-field Hartree-Fock and semiclassical approximations, interactions produce a shift ΔTc/Tc0b1(a/λTc)+b2(a/λTc)2+ψ[a/λTc]\Delta T_{c}/T_{c}^{0} \approx b_1 (a/\lambda_{T_c}) + b_2 (a/\lambda_{T_c})^2 + \psi[a/\lambda_{T_c}] with aa the s-wave scattering length, λT\lambda_T the thermal wavelength and ψ[a/λTc]\psi[a/\lambda_{T_c}] a non-analytic function such that ψ[0]=ψ[0]=ψ"[0]=0\psi[0] = \psi'[0] = \psi"[0] = 0 and ψ"[0]=|\psi"'[0]| = \infty. Therefore, with no more assumptions than Hartree-Fock and semiclassical approximations, interaction effecs are perturbative to second order in a/λTca/\lambda_{T_c} and the expected non-perturbativity of physical quantities at critical temperature appears only to third order. We compare this finding with different results by other authors, which are based on more than the Hartree-Fock and semiclassical approximations. Moreover, we obtain an analytical estimation for b218.8b_2 \simeq 18.8 which improves a previous numerical result. We also discuss how the discrepancy between b2b_2 and the empirical value of b2=46±5b_2 = 46 \pm 5 may be explained with no need to resort to beyond-mean field effects.Comment: 6 pages, to appear in Eur. Phys. J. B (2013

    Isochronous solutions of Einstein's equations and their Newtonian limit

    Full text link
    It has been recently demonstrated that it is possible to construct isochronous cosmologies, extending to general relativity a result valid for non-relativistic Hamiltonian systems. In this paper we review these findings and we discuss the Newtonian limit of these isochronous spacetimes, showing that it reproduces the analogous findings in the context of non-relativistic dynamics.Comment: arXiv admin note: text overlap with arXiv:1406.715

    Palatini formulation of non-local gravity

    Get PDF
    We derive the dynamical equations for a non-local gravity model in the Palatini formalism and we discuss some of the properties of this model. We have shown that, in some specific cases, the vacuum solutions of general relativity are also vacuum solutions of the non-local model, so we conclude that, at least in this case, the singularities of Einstein's gravity are not removed.Comment: 10 page

    Isochronous Spacetimes

    Full text link
    The possibility has been recently demonstrated to manufacture (nonrelativistic, Hamiltonian) many-body problems which feature an isochronous time evolution with an arbitrarily assigned period TT yet mimic with good approximation, or even exactly, any given many-body problem (within a quite large class, encompassing most of nonrelativistic physics) over times T~\tilde{T} which may also be arbitrarily large (but of course such that T~<T\tilde{T}<T). In this paper we review and further explore the possibility to extend this finding to a general relativity context, so that it becomes relevant for cosmology.Comment: Submitted to Acta Appl. Mat

    Super-renormalizable or finite completion of the Starobinsky theory

    Full text link
    The recent Planck data of Cosmic Microwave Background (CMB) temperature anisotropies support the Starobinsky theory in which the quadratic Ricci scalar drives cosmic inflation. We build up a multi-dimensional quantum consisted ultraviolet completion of the model in a phenomenological "bottom-up approach". We present the maximal class of theories compatible with unitarity and (super-)renormalizability or finiteness which reduces to the Starobinsky theory in the low-energy limit. The outcome is a maximal extension of the Krasnikov-Tomboulis-Modesto theory including an extra scalar degree of freedom besides the graviton field. The original theory was afterwards independently discovered by Biswas-Gerwick-Koivisto-Mazumdar starting from first principles. We explicitly show power counting super-renormalizability or finiteness (in odd dimensions) and unitarity (no ghosts) of the theory. Any further extension of the theory is non-unitary confirming the existence of at most one single extra degree of freedom, the scalaron. A mechanism to achieve the Starobinsky theory in string (field) theory is also investigated at the end of the paper.Comment: 12 pages, 1 figur
    corecore