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Palatini formulation of non-local gravity
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We derive the dynamical equations for a non-local gravity model in the Palatini formalism and we
discuss some of the properties of this model. We have show that, in some specific case, the vacuum
solutions of general relativity are also vacuum solutions of the non-local model, so we conclude that,
at least in this case, the singularities of Einstein’s gravity are not removed.

I. INTRODUCTION

Recently, the possibility of using higher-derivative the-
ories to construct a viable non-local theory of quantum
gravity has been considered [1, 2]. These models have
been constructed in order to fulfill the following set of
hypotheses: (1) Einstein-Hilbert action must be a good
approximation of the theory below the Planck energy
scale; (2) The theory must be perturbatively quantum-
renormalizable on a flat background; (3) The theory must
be unitary; (4) Lorentz invariance must be preserved; (5)
Possibly, the presence of singularities is avoided.

Non-local models have been shown to be both renor-
malizable and ghost-free [1, 2] and are currently believed
to be a viable alternative to other quantum gravity sce-
narios, i.e. Loop Quantum Gravity, Strings and Noncom-
mutative Geometries (see [3] for a review).

The typical Lagrangian density for non-local gravity
is an extension of the Stelle theory[4] (which is renor-
malizable but plagued by ghosts) and has the following
form:

1
L=R— (RW - 2Rg,w> ~(O/A?)R™ (1)

where the form factor v(z) is a non-polynomial analytic
function, (I is the covariant D’Alembertian operator and
A is an invariant mass scale close to the Planck mass.
The propagator of the theory is

GUR?) = V(k;/m) <P<2) - P;‘”) 7 @)

where P(® and P®?) are the spin zero and spin two pro-
jectors 1 and where V(0J/A?) is defined by
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1In four dimensions the projectors are defined as

V(O/A%)~ — 1

~(0O/A?) = : (3)

We stress that (1) is not the most general realization
of non-local gravity and more general examples will be
considered in the following. For instance, one may con-
sider a model with two form factors as in [5] (which has
an extra scalar degree of freedom which is not a ghost),
add quadratic non-local combinations of the Ricci tensor,
etcetera. However, (1) is very useful to describe the key
properties of non-local gravity, so we focus on this model
first.

In order to recover Einstein’s gravity for small mo-
menta, one requires that V(z) ~ 1 for |z| < 1. Moreover,
if one imposes that V'(z) has no poles, the theory contains
only the two massless gravitons of Einstein’s theory, with
no extra propagating particles, and thus one avoids the
occurrence of ghosts. Thus, if one wants to avoid ghosts,
the form factor v(z) cannot be polynomial, so that the
theory must contain an infinite number of derivatives and
it has to be non-local. We stress that 1/A represents the
length scale above which the theory is fully nonlocal and
that the local behavior of the theory is recovered at en-
ergies below A.

We remember that the study of non-local quantum
field theory has been introduced by Efimov in a series
of seminal papers [8-10], where he discussed the quan-
tization scheme [8], the unitarity of the theory [9] and
the causality [10] in the case of a non-local scalar field
(see also [11] for a recent discussion). We also mention
that a nonlocal version of QED has been studied in [12],
nonlocal vector field theory has been introduced in [13]
and nonlocal gauge theories have been studied in [14].
More recently, in [15] it has been considered the case
of a nonlocal scalar field with specific self-interactions

(1] Pﬁ?pa(k) %(oupew + Ouobup) %0,“,9,;0,

Pély?p(,(k) % (Oppwro + Ouowvp + Ovpwpo + Ovowyp)
P;S?/?po(k) = %‘gwepa ) P;S?f),pa(k) = wuWpo, O =
kuky kuky

77}“/ k2 ’

wl“’ = k2



which have been chosen to present the same symmetries
of the non-local quantum gravity (NLQG); in [16] the
non-locality-induced one loop corrections to the scalar
field potential have been calculated and the implications
for cosmology have been discussed.

The second key property of non-local gravity, i.e. its
renormalizability, can be understood from the observa-
tion that, if V(z) goes to zero for |z| > 1 sufficiently
fast, the convergence of the propagator in the ultravio-
let is improved in such a way that the theory results to
be renormalizable, since this improves the convergence
of the integrations over loops (see for instance [17] for
details).

At cosmological level, non-local gravity has nice prop-
erties: in [5-7] it has been shown that on a FRW back-
ground it reduces to the R+ eR? Starobinsky model [18]
with the identification e = 1/A? up to corrections of order
1/A%. Therefore, non-local gravity gives a viable inflation
in agreement with Planck data [19] for A ~ 1075 Mp [5-
7).

It is notable that non-local gravity models can be
constructed, which are free from the singularities which
affect Einstein’s gravity. In fact, in some specific
models, the linearized equations for gravitational per-
turbations of Minkowski background typically reads
exp(0/A*)Oh,, = Mp®7,, [2], where 7,, is the
stress energy tensor of matter. For a point-like source
of mass m this gives a Newtonian potential hgy ~
erf(rA/2)m/rM%, where erf(z) is the error function
of argument z, which is finite for all » > 0. This shows
how black holes singularities of general relativity can be
removed in non-local gravity (see also [20]). With simi-
lar arguments one can show that also the big bang sin-
gularity can be removed and a non singular bouncing
cosmology can be obtained [21]. We stress that the dis-
appearance of singularities is very model dependent and
for instance the specific model (1) still has all the sin-
gular vacuum solutions of Einstein’s gravity [22], as the
Schwarzschild and Kerr metrics among others (see also
[23] for further discussions on non-singular spacetimes).

In this paper we are interested in deriving the Palatini
formulation of non-local gravity. The Palatini formalism
[25] assumes that the metric tensor and the affine con-
nection are independent variables, so that the field equa-
tions are obtained by varying the action with respect to
both variables. If applied to the Einstein-Hilbert action,
the Palatini method gives the same equations of motion
of general relativity but, if one consider modifications
of Einstein’s gravity (see [26] for a review of modified
gravity models), it gives a completely different theory of
gravitation [27].

For instance, in the case of modified f(R) gravity, the
action is

5=—2—22/d4xx/—79f(R)+5ma (4)

where S, represents the action of all the matter fields,

k2 = 8r(@ in natural units, G is the gravitational con-
stant and R is the Ricci scalar constructed with the affine
connection I'G 2. Furthermore, henceforth we limit our
analysis to a symmetric connection I‘O‘M = I‘o‘V -

The variation of the action (4) with respect to the met-

ric tensor gives the set of equations

1
fl(R)R/w - if(R)g/w = “2T/w 5 (5)

where f/(R) = Orf(R) and T),, is the energy-momentum
tensor of matter, which is defined as

2 6Sn,
V=g og’
while the variation of the action (4) with respect to the
affine connection gives the equations 3

Tuw (6)

2 (Vo (V=af (Rig™) =V, (v=af (R)g"") o)) ] =

— _9Sm
=TT,

(7)
where the second term in the l.h.s. of the last equation
is symmetrized in the indices p and v.

In most physical cases, the matter action .S,, is inde-
pendent from the affine connection, thus 6,,/6I), = 0
4. In this case, taking the trace on A and p in Eq.(7), it is
evident that if f(R) = R, i.e. in the case of the Einstein-
Hilbert action, the affine connection is exactly the metric
connection associated to the metric tensor g,,, and gen-
eral relativity is recovered. However, when f(R)" # 1,
equation (7) gives the compatibility condition

Va (f(R) g") =0, (8)

and the theory is genuinely different from the correspond-
ing f(R) model in the metric formalism. In fact, equation
(8) implies that the connection I'§, is the metric connec-
tion of the tensor h* = f’(R) g"¥, which is conformal to
the metric tensor gH”.

In what follows we derive the Palatini formulation of
non-local gravity in the case of an action containing non-
local quadratic terms constructed with the Ricci scalar

2 Hereafter we use the following convention: Rpc,#,, = fayl“g# +
0,5, =T8I0, +T8, 0, Ruy = Rf‘mﬁ and R = g"Y Ry,. This
definition differs for a minus sign from the one used in [24].

3 We remember that a tensor density of weight w can be written
as tgg = (—g)¥/? T‘;‘;:::, where T;‘;::: is a tensor, and the
covariant derivative of a tensor density is defined as V,t% 2 =
(—g)¥/? VT, see [28].

4 This is not the most general case which can be considered. For
instance, in appendix B it is shown that in the case of a nonlocal
scalar field one has 6Sm/5Ff;V #0.



and with the Ricci and Riemann tensors.
our lagrangian density will be of the type

=952 (R+Ac) + Rhy (—0Oa) R+

Specifically,

£gra'u

+ Ry ho (—04) R*™ + Ruyap hs (—0y) RP]

where we have included an optional cosmological con-
stant A, and where O, = 0O/A?, O = ¢"¥V,V, is the
d’Alembertian operator constructed with the covariant
derivatives associated to the non-metric connection I'“;
and the three form factors h; (z) are analytic functions
of their arguments and their action extend to the objects
on their right hand side, see [17] for review.

Therefore the complete action for the gravitational
field Sgrqv = f d433£g,.m) contains the usual Einstein-
Hilbert term

1
Segn = —ﬁ/d%v -9 (R+ Ac) ) (10)

plus the three contributions

SScalar = /d4x\/ _thl (_DA) Rv (11)
SRicci = /d4$\/ —-9g R,uu h? (_DA) R ) (12)

SRiemann = /d4$\/ —g R/J.I/O(ﬁ h3 (_DA) RMVO(B ) (13)

The lagrangian (9) includes for instance, the case of
the model presented in [17], corresponding to the choice
h1 = —hs/2 and hg = 0, which is of particular interest
since it is quantum-renormalizable and ghost free on a
flat background. We stress that the condition hg = 0 does
not spoil renormalizability and unitarity of the theory
around flat spacetime.

In section II, following the same line outlined in
[22, 24], we derive the field equations for the lagrangian
(9). The variation of the terms (11-12-13) are derived in
sections IT A-ITB-II C respectively. We stress that, since
our connection is non-metric, the operators h; do not
commute with the metric tensor g,,, and therefore the
following action

Shives = / B/ =g R B3 (~0x) Ry, (14)

is physically different from Sgice; defined in (12). Since
we are interested in giving a method to derive the equa-
tions of motion for a generic nonlocal theory assuming
the Palatini variation, in what follows we will limit our
analysis to the terms (11-13). However, with an illustra-
tive scope, we will calculate the variation of the action
(14) in Appendix A.

Then, in section (III) we will consider the full set of
equations of motion and we will show that, when hg = 0,
the vacuum solutions of general relativity are also vac-
uum solutions of the theory (9), see [22] for an analog
result for the non-local metric theory and [29] for the lo-
cal f(R) models. This fact shows that, at least in this
case, the singularities of Einstein’s gravity are not re-
moved. Finally, in section IV we will resume the main
results of this paper and we will conclude.

II. EQUATIONS OF MOTION

As it was mentioned, the Palatini’s method does not
assume a priori a standard form, given by the Christoffel
symbols, for the components of the affine connection. In-
stead, it is based on the hypothesis that the metric tensor
and the connection are independent variables [28] (for a
review of the history of the method see [30]).

If the connection is symmetric, the variation of the
Riemann tensor can be expressed as

OR’ ., =Vu(6T7,,) =V, (5F”W) ) (15)

Accordingly, for the variations of the Ricci tensor and the
Ricci scalar we have

5Rav = vp (5pra) - vl’ (5Fp[)0) ’ (16)
and
0R = QUD(SRUV + 590UR0'V . (17)

In the following, we will make extensive use of the for-
mula of integration by parts, which allows to show the
following formula

Jd'e =g AR OBgIG =
(18)
[dte =g (O Az g ) B
which is valid for any couple of tensors Agllgzz and

BZ‘;E;_'_‘.' with the condition that one of them is null on

the boundary of integration, and where the operator [t
is defined as

L
V=5

Moreover, from Eq.(16), one also has

Ot7PiPz- =

1.

V.V (V=gg™ T . (19)

[ d*z /g T*oR,, =

= [ d'z [V (V=gol T 7) = Vo (y=gT®)| oT3, .
(20)



To derive the field equations we have to calculate the
functional derivatives of the action of the gravitational
field with respect to the metric and the affine connection,
which are obtained by variation of the action with respect
to such variables. The variation of the Einstein-Hilbert
term (10) is straightforward (see [28, 30]), and one has

SSen 1
Sghv 2K2

V=g (GW - A;g,w> . (@

where G, = R, — R g,.,/2 is the Einstein tensor, and

0Sgm 1
ore,  2k?

[Va (V=99"") = Vs (\/TQQB (") 55)} :

(22)
where in the last term the indices p and v are sym-
metrized. Therefore, all we need is to calculate the func-
tional derivatives of the terms (11-13), which is the sub-
ject of the following sections.

A. Scalar action

To begin with, let us regard the action (11), which
depends on the Ricci scalar. The variation of this action
is

6SScalar = fd4x\/ —g{R§h1 (—DA) R+
Y Rhy (—~0a) R+ 6Rhy (—0,) R+ (23)
_éﬁthlF{h)R5¢”}y

where we have used §/—¢g = —1/2¢,,0¢9""\/—g .

To handle the first term in the r.h.s. of Eq.(23) we
follow the method outlined in [22, 24], and we expand
the analytic function hy (—O,) in power series as

which allows to express dh; (—[p) as

=076 Om 1. (25)

o= 35

The action of 6] on a tensor X is schematically defined
by

(00) X =6 (0X) — 06X, (26)

and in the case of a scalar field ¥ one has
(O)v = [59“”V#V,ﬂ/} — gwargyvaw] . (27)
Using Eqgs.(25,27) one has
[ dtey/=gRoh (~08) R =~ S0 0 b x
X fd%,ﬁg[(mﬂ*v“vymmr11) Sgh +

_ (R[r]TguvvaR[m—T—l]) ore :| ,

pv
where we have defined (28)
R = (‘E)kR’ (29)
and
R = (‘g)kR- (30)

Let us consider the second and third terms in Eq.(23).
They can be recast as

fd4x¢fg{3 b (~O/A2) 6R + SRy (~0I/A2) R} _

/ d4x\/jg{h1 (=0/A%) R+ hy (-0 /A2) R}(SR =
= [dz\/=gFJR,

with the definition
F=h (-0/A*) R+~ (-O7/A))R. (32

(31)

Using Eq.(17) one also has
[d*z/=gFSR = [ d*x\/—=gF [6g" Ry + 9" 0R,] =
= d4w{ﬁF R,.,0g" +
+ [Va (V=g Fg™) = Vi (V=g F g") 52| ‘WV} ’
(33)
where we have used Eq.(20) with the identification T*" =

Fghv.
Therefore, from Egs.(23,28,33) one has

&S;Ssgcﬁm — \/7{ %gm/Rhl (-OA) R+ F R+

A2 Zm 0 Zm ' h(M) R[] V(MVV)R[mrl]}
(34)



and

6SS<‘ala7‘ _
,u

— -1
SRVETE Dl Y

Va (V=g F ") =V (V=g F ¢"®) )+

hgm) R[r]*gm/vaR[mfrfl] )
(35)

B. Ricci action

Let us consider in the present section, the variation of
the action (12), which can be written as

5Schz = fd417\/ { 2gﬂl/ aﬁh2( DA) Raﬁgg#l/+
48R, hy (~00) R™ + Ry 0hy (—Oy) RP+
4 Ryhs (—0y) 5RW} .

(36)

It is not difficult to see that the second and the last
terms on the r.h.s of (36) can be handled to give

J 5] 8Byuha (-On) B + Byuha (-O) 010 | =

fd%{ﬁ{]%,}’hg (—%) Ry + R, (—%) Ra,,} Sgh+

+ |:vﬁ (HééﬂFV)ﬂ) - va (\/ _gF(HV)):| 5Fﬁy} i
(37)
with F9 = hy (— &) B2 + 9*g%hs (- 53 ) Ry, and
where Eq.(16) was taken into account.
Now, let us consider the following expression for the
function hg, analogous to the one given in (24):

“Oh) = > A )(—A2> . (38)
m=0
Therefore, its consequent variation leads to
oo m—1 hgm) )
Ohg (—p) = g soom—Tm—. (39
2 A z:: ;) (—A2)m ( )
Defining for this case
0\"* .
Rlkle8 — <A2) R%# (40)

and

i at y
w) = (-5) s ()

where O is given by Eq.(19), the third term on the
r.h.s. of (36) can be expressed as

[ d*z/=gR,.,0hs (—0y) R* =
- m r]’ m—r—1|pv

_% Dm0 ZTzol hé : Jdtzy _QRLI]/ §(0) R Hw
(42)

The calculation of Eq.(42) requires the following iden-
tity, which can be obtained with the aid of Eq.(26), for

an arbitrary symmetric contravariant tensor of second
order:

(60) TP = 69V, V, TP +20T85 VYT + 2615, VY TP+

+TPPVYOTE, + TPVYOTS, — g T3, VAT |

(43)
Applying this last result in (42), one finally gets

[d*z /=g Rubhy (—0p) RM = =35 3> Zr 0

de‘{’p{(\/iRT]vv-Rm r— 1]a6>5g,“/+
|: VA <\/7g,u)\( T] R[m r— 1]1/5_|_R[r] R[mrl]ﬁy)>+
+\/j9(23g5 Vi Rlm=r=11pv 4 g Rl gu glm—r—1ls |

v [T]Jr m—r— «
—g" Ryg VRl 1]A5)] (H‘W} .
(44)

In conclusion, the variation of the Ricci action leads to
the following equations

Smicer — N{éguuRaﬁhz (=) RO+
o ot a ot
+R (yh2 (*ﬁ) Rau) + R(y h'2 (7ﬁ) R“)a+

A2 Zm o Zm 1 h(m)R([l/]g V(HVV)R[mTI]D‘B} ,
(45)



and

5393;@1 =V; (\/jg(g((xHFV)ﬁ) v (\/TgF(l“’)) +
+$Zm Ozm 1h(m)

{v/\ [\ﬁg/\(u( T] Rlm—r— 1]V)/3+R[T Rlm—r- 1];@))}
[7’]T m—r—1]8v [7’]T m—r—1]v
—\/Tg[zRﬁa vrRI I8v) 4 2RI V(R )8 4

—gh RE\T[]; vaR[mTHAB} } )

(46)
where we have symmetrized these expressions with re-
spect to the indices p and v.

C. Riemann action

In this last section, let us expand the calculation of the
variation of the Riemann action (13). To begin with, let
us consider the expansion in power series of the function

hs(—0y):
ha(=0a) = > h{™ (—E) - (47)

After some simple manipulation, considering (47) and
(18), the variation of (13) can be written as

58Rzemann - fd4x\/ { |: Rﬂ- of <h3( )Rﬂ'yaﬁ>+
_gau vwaf <h3 ( %) Raw(xﬁ) - %gMURTFO'OzBX

e | L PR (S I

ot

+g,uugoagﬁ7r <h3 ( A2> Rp/l.a'rr):| 5Rpua[3+

(48)

The terms in (48) involving the variation of the Rie-
mann tensor give

Jd*a/=goR ap |:9#Ph3 (—5) Rrves 4 grv goe gfmx
xhs(~55) R ww] Jdix [Vﬁ (\/jggp”g‘”‘gﬁ”x

xhs (—%) Rap[,,r) ~

where we have used Eq.(15).

Analogously to the previous sections, the calculation
of the last term in (48) makes use of the expression of
the variation of hz(—0y)

9 (Vo () e o,
(49)

,_.

m—

(Vn)

=060 Om=—r=1 (50)

Shs (—Oy) = i

m=0 r=0
and of the following property for an arbitrary fourth rank

tensor

((5|:|) Tuvaf 5gUAvUvATuva,B + ga>\ [T””aﬁvgéf’;p—y

TIPSy |+ THPOV 0TS, + TH PV 0T +

+20T% Vo TPe8 4 26TK W, THeoP 4 26TV, THPP 4

6 ra rvo
+20T Vo TH P — 6T% \V , T 5].

(51)

Thus, considering Eqs.(50) and (51) after applying the

symmetry properties of the Riemann tensor, we finally
have

[ d*x\/=gRvapdhs(—0p) RAVP =
b T T [ ey R

% (VHVVR[m—T—l]TrUa,@) é‘guu [ggqu[T]

awaﬂ

% (VWR[m_T_l]Vwaﬁ) (Fgﬂ—ﬂRagwﬁ x

m—r—1lvow v [T]T m—r—1|ro o
x Rim=r=1vows) _ g gll' (g plm=r=1 pﬁ)}(grw
(52)
where, as usual, we have denoted
RlFlefow = (‘1\2) RoPoe (53)

and



RH

affow

(54)

Ofh\*
A2> Raﬁau.w

= (-

Finally, we have that the variation of the Riemann
action leads to

0SRiemann —
dghv

/g{3R7r of h3 ( T) Ry)ﬂaﬂ+
7gU(MRV)UJOéB h3 ( ) Rawaﬁ - 7g,le7r0'aB X
ha (=0 groas _ mt ) il
X 3( A2) A2Zm OZ 7ro’oc,@><

xv(uvy)R[mrl]ﬂ'a‘aﬁ} ,

(55)
and
v ™ T
Eppann — 7 [rgﬂ 97 9% hy (-3 )Ramh

Vo [V st (- ) R+

(#RL]

wao B

A2 Zm Ozm 1h(m){8g

[\/79 pRLZ]wJ R[m—r—l]u)o’w,@]+

g,uuR [V Rm r— 1]770;)[%}}

TrO'pB

III. DISCUSSION

In the last sections we have derived the functional
derivatives of the action of the non-local gravitational
field with respect to the metric tensor and the connection,
see Eqs.(34,35,45,46,55,56). The dynamical equations for
the metric tensor and the connection read

0Sgrav _ 6SpnH 0Sscalar ISRicei OSRiemann 0Sm
Sgrv T Sghv + gy + g + Sgiv + Sghv
(57)
and
0Sgrav _ 6SpH 0Sscalar 53Rwu 0SRiemann OSm
sta, — ory, + sl + Ta, + e, + sTe, —
(58)

At afirst look Eqgs.(57,58) seem extremely complicated.
An initial observation is that it is impossible to recast
(58) in the form (8), i.e. it is not immediate to find a
metric tensor i, for which I'j;, is the metric connection.

[vﬂR[mfrfl]u)waﬂ] +

)

Therefore we lose one of the main simplifications of the
Palatini formalism in f(R) theories.

However, with certain assumptions, one can show that
some of the well known solutions of the Einsteinian grav-
ity verify (57,58). Let us set S, = 0 and hg(Op) =
0, which guarantees that 0Sriemann/09uy = 0 and
68Riemann/5rzly = 0.

As first example, let us assume that A, = 0 and let us
consider the vacuum solutions of the Einstein’s equations,
which are such that R,,, = 0, where the Ricci tensor is

constructed with the metric connection F(mEt)ffl, of g,
that verifies V(md)gw = 0. It is easy to show that the

couple (I‘(met),(f,,7 guv) is solution of the system (57,58)
in vacuum and with zero cosmological constant. In fact,
since R = 0 and R, = 0, one has that éSgx/0g"" = 0,
0Sscatar/0g" = 0, dSRicei/dg*” = 0 independently. For
the same reason, using the fact that the connection is
metric, one also has éSgy /0T'%, = 0, 685,;alar/61"fju =

(58me/(5FW, so that the system (57,58) is fully verified.

A second class of exact solutions of (57,58) is obtained
considering a nonzero cosmological constant A.. One can

thus show that the couple (F(met),oj,,, guv) of solutions
of the Einstein’s equations in vacuum with cosmological

constant, is a solution of (57,58). In fact, in this case

one has R,, = —A.gu,/2 and therefore V(met)le =
0. One can easily verify that Sgrqv/0g,, = 0 and
6ngv/6rl‘jy = 0, so that the equations of motion are
satisfied.

These two cases exhaust the known examples of exact
solutions of our dynamical equations. In more general
cases one can include a contribution (13) to the action
of the gravitational field, or extend the non-locality of
the gravitational field to the matter fields, as in the case

of a non-local scalar field briefly studied in appendix B,
which implies 65, /T, # 0

These simple examples show that, at least in the case
h3(0a) = 0, the singularities of Einstein’s gravity are
not removed, since for instance black hole solutions are
still there. However, one hopes that in the more general
case h3((Jp) # 0, models can be constructed which are
singularity free.

IV. CONCLUSIONS

In this paper we have found the dynamical equations of
the non-local gravity model (9) in the Palatini formalism.

* We have discussed some of the properties of the model

and we have shown that, in the case hg = 0, the vacuum
solutions of general relativity are also vacuum solutions
of the model (9). We have concluded that, at least in
this case, the singularities of Einstein’s gravity are not
removed.
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APPENDIX A: VARIATION OF THE ACTION
(14)

In this section, the goal will be to display the cal-
culus of the variation of the action given by Eq.(14).
Thus, after some straightforward manipulation consid-
ering Eq.(19) and expanding h} in power series similarly
to Eq.(38), it is not difficult to show that the variation of
the Ricci action can be written in the following manner

58}%1‘001’ = fd4x\/jg{ [_égﬂuRaﬂh;(_E)Raﬁ‘i‘
FR,M3 (—2) Rypa + B2, 03 (—2) Rw)]ggm

-&-[g““gﬂ” (h* (& )Raﬁ> + (h;(—%;)R”“)](SRW—i—

+RHSRS (— 1) Rm,} .

(A1)
By considering (16), the terms in the second bracket
on the r.h.s. of (Al) can be handled to give

[ d*z\/=goR,,, {ga“gﬁ”hg (=) Ragp + h;(ﬂ)RuV] =

Jatal, (v=go8 F0) = 9 (=g on) o,
(A2)
where F*@8 = gwagmBps (—%) Ryr +hi (—%) R,
With the aim of treating the last term on the r.h.s. of
(A1), by using (26) an expression analogous to (43) can
be found. In this case, it is given by

(60) Top = 09"V V., Top — Top VHOL,, — Tog VHOLY 5+
—g“”&l")‘ ViaTop — 201,V Tos — 2017,V T,

(A3)
with T3 denoting an arbitrary covariant tensor of rank
2.

Thereby, taking into account Eq.(A3) and that here we
have

=5 " st

(A4)

we write

[ dbe/=gRm™Shy (=0a) Ry = — 1 200 St g™ x

rlty m—r— 1t 8y plm—r—
+[vp <\/fggup (R[ ] ﬁRLB 14 Rin's R,[Ba 11)) +
= v plrlt [m—r—1] r|TvB [m—r—1]
V=g (9" ROV R g R ek gl

+2R[’“WVVHR[B’2""”)} aTe } :

%

(A5)
where we have defined
O\
R = (~33) Fas. (A6)
and
T ot k
Rl B = (‘1\2) RF. (AT)

Therefore, the complete variation of the Ricci action
(14) reads

88k «
55@” =V _g|: ggMVR ﬁhQ( )Raﬂ+
* O * O
RS (= 52) Ruye + RS (= 52) Rop+

m— *’m a m—r—1
A2 Z’m OZ 1 ( )RH BV(MVV)R[ ] )

(A8)
and
- () o

*(M)

A2 Zm 0 Z
{vp {\/fggpm ( R8I | Ril'a) R[B’Z‘T‘”ﬂ N
/=g [g#uR[r]tpﬁvaR%—r-ﬂ 4 2R gl
L oRI Bk R[ng—r—l]} }

(A9)

where the indices ¢ and v have been symmetrized.

APPENDIX B: NON-LOCAL SCALAR FIELD

Let us consider a non-local scalar field whose action is



55, = fd‘*w—*g{w (—Oa) 6 — v<¢>} . (B

where Q(z) is analytic, and let us calculate the functional
derivatives of this action with respect to the metric and
the connection. The variation of (B1) gives

08y = fd4x\/jg{¢5Q(—DA)¢+

guuégm)} ,

therefore all wee need to calculate is the first term in
the r.h.s. of Eq.(B2). To do that, we follow the same
procedure of section ITA, and we expand @ (—0,) in
power series as

(B2)
1 V(@00

Q(—04) =

Yo (-m) . e

m=0

which allows to express Q) (—0,) as

,_.

m—

—La) = Z —A)™

m=0 r=0

—_LOrsoaOmTt . (B4)
so that by use of (27) one has

J d*ay=g$6Q (~0a) & = —3= 0o 7y Q)
x [ d'ey=g [(«zﬂ’" V,uVyomrl) sgr

_ (sb[’”V guuvad,[mfrfl]) M‘ﬁy] ,

where we have defined

0 k
M=(-z) ¢ (B6)
and
mAW
<z>“f”z( AQ) 2 (B7)

Therefore, from Egs.(B2,B5) one has

S — ) V(¢)—¢p Q(—0O
59“4:/ - g{ - 2( A)¢g;uj

b T S QU 611V gl

and

5S4

3T,

>~ Ozm 1Q(m)¢r]fguuv ¢m r— 1]
(B9)
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