3 research outputs found

    Healing Effect of Controlled Anti-Electromigration on Conventional and High-T-c Superconducting Nanowires

    No full text
    The electromigration process has the potential capability to move atoms one by one when properly controlled. It is therefore an appealing tool to tune the cross section of monoatomic compounds with ultimate resolution or, in the case of polyatomic compounds, to change the stoichiometry with the same atomic precision. As demonstrated here, a combination of electromigration and anti‐electromigration can be used to reversibly displace atoms with a high degree of control. This enables a fine adjustment of the superconducting properties of Al weak links, whereas in Nb the diffusion of atoms leads to a more irreversible process. In a superconductor with a complex unit cell (La2−xCexCuO4), the electromigration process acts selectively on the oxygen atoms with no apparent modification of the structure. This allows to adjust the doping of this compound and switch from a superconducting to an insulating state in a nearly reversible fashion. In addition, the conditions needed to replace feedback controlled electromigration by a simpler technique of electropulsing are discussed. These findings have a direct practical application as a method to explore the dependence of the characteristic parameters on the exact oxygen content and pave the way for a reversible control of local properties of nanowires.status: publishe

    Advancing the Landscape of Multimessenger Science in the Next Decade

    No full text
    Engel K, Lewis T, Muzio MS, et al. Advancing the Landscape of Multimessenger Science in the Next Decade. arXiv:2203.10074. 2022.The last decade has brought about a profound transformation in multimessenger science. Ten years ago, facilities had been built or were under construction that would eventually discover the nature of objects in our universe could be detected through multiple messengers. Nonetheless, multimessenger science was hardly more than a dream. The rewards for our foresight were finally realized through IceCube's discovery of the diffuse astrophysical neutrino flux, the first observation of gravitational waves by LIGO, and the first joint detections in gravitational waves and photons and in neutrinos and photons. Today we live in the dawn of the multimessenger era. The successes of the multimessenger campaigns of the last decade have pushed multimessenger science to the forefront of priority science areas in both the particle physics and the astrophysics communities. Multimessenger science provides new methods of testing fundamental theories about the nature of matter and energy, particularly in conditions that are not reproducible on Earth. This white paper will present the science and facilities that will provide opportunities for the particle physics community renew its commitment and maintain its leadership in multimessenger science
    corecore