24 research outputs found
Foraging ecology of the endangered wood stork recorded in the stable isotope signature of feathers
Down feathers and regurgitant were collected from nestling wood storks (Mycteria americana) from two inland and two coastal breeding colonies in Georgia. The stable isotopic ratios of carbon ( 13 C/12 C) and nitrogen ( 15N/ 14N) in these materials were analyzed to gain insights into the natal origins of juvenile storks and the foraging activities of adults. Down feathers differed in δ 13 C between inland and coastal colonies, having average isotopic values that reflected the sources of carbon fixed in biomass at the base of the food web. Feathers from the inland colonies differed between colonies in δ 15N, while those from the coastal colonies did not. These patterns primarily reflected the foraging activities of parent storks, with individuals capturing differing percentages of prey of distinct trophic status at each colony. Collectively, the carbon and nitrogen isotopic signatures of feather keratin were used to distinguish nestlings from each colony, except for instances where storks from different colonies foraged in common wetlands. The stable isotopic composition of food items in regurgitant was used to reconstruct the trophic structure of the ecosystems in which wood storks foraged. Predicted foraging activities based on the isotopic composition of keratin were generally consistent with the percentage of prey types (freshwater vs. saltwater and lower trophic level vs. upper trophic level consumer) observed in regurgitant, except for the coastal colony at St. Simons Island, where the δ 13 C of feathers strongly suggested that freshwater prey were a significant component of the diet. This inconsistency was resolved by aerial tracking of adults during foraging excursions using a fixed-wing aircraft. Observed foraging activities supported interpretations based on the stable isotope content of feathers, suggesting that the latter provided a better record of overall foraging activity than regurgitant analysis alone. Observed foraging patterns were compared to the predictions of a statistical model that determined habitat utilization based on habitat availability using a geographic information system (GIS) database. Observed foraging activities and those predicted from feathers both suggested that some adult storks preferred to feed their young freshwater prey, even when saltwater resources were more accessible in the local environment. This conclusion supports the contention that wood stork populations are sensitive to changes in the distribution of freshwater habitats along the southeastern coastal plain of the United States
Foraging ecology of the endangered wood stork recorded in the stable isotope signature of feathers
Down feathers and regurgitant were collected from nestling wood storks (Mycteria americana) from two inland and two coastal breeding colonies in Georgia. The stable isotopic ratios of carbon ( 13 C/12 C) and nitrogen ( 15N/ 14N) in these materials were analyzed to gain insights into the natal origins of juvenile storks and the foraging activities of adults. Down feathers differed in δ 13 C between inland and coastal colonies, having average isotopic values that reflected the sources of carbon fixed in biomass at the base of the food web. Feathers from the inland colonies differed between colonies in δ 15N, while those from the coastal colonies did not. These patterns primarily reflected the foraging activities of parent storks, with individuals capturing differing percentages of prey of distinct trophic status at each colony. Collectively, the carbon and nitrogen isotopic signatures of feather keratin were used to distinguish nestlings from each colony, except for instances where storks from different colonies foraged in common wetlands. The stable isotopic composition of food items in regurgitant was used to reconstruct the trophic structure of the ecosystems in which wood storks foraged. Predicted foraging activities based on the isotopic composition of keratin were generally consistent with the percentage of prey types (freshwater vs. saltwater and lower trophic level vs. upper trophic level consumer) observed in regurgitant, except for the coastal colony at St. Simons Island, where the δ 13 C of feathers strongly suggested that freshwater prey were a significant component of the diet. This inconsistency was resolved by aerial tracking of adults during foraging excursions using a fixed-wing aircraft. Observed foraging activities supported interpretations based on the stable isotope content of feathers, suggesting that the latter provided a better record of overall foraging activity than regurgitant analysis alone. Observed foraging patterns were compared to the predictions of a statistical model that determined habitat utilization based on habitat availability using a geographic information system (GIS) database. Observed foraging activities and those predicted from feathers both suggested that some adult storks preferred to feed their young freshwater prey, even when saltwater resources were more accessible in the local environment. This conclusion supports the contention that wood stork populations are sensitive to changes in the distribution of freshwater habitats along the southeastern coastal plain of the United States
Clapper rails as indicators of mercury and PCB bioavailability in a Georgia saltmarsh system
Clapper rails (Rallus longirostris) were used as an indicator species of estuarine marsh habitat quality because of their strong site ďŹdelity and predictable diet consisting of mostly benthic organisms. Mercury (Hg) and the polychlorinated biphenyl (PCB) Aroclor 1268 concentrations were determined for sediments, crabs, as well as clapper rail adults and chicks collected from salt marshes associated with the LCP Superfund site in Brunswick, Georgia. Home ranges were established for adult rails, and sediment and crab samples were taken from each individualâs range. The study was designed to minimize the spatial variability associated with trophic transfer studies by choosing an endpoint species with a potentially small home range and speciďŹcally sampling its foraging range. The mean home range for clapper rails was 1.2 ha with a median of 0.28 ha. Concentrations of Hg and Aroclor 1268 were shown to increase with each trophic level. Transfer factors between media followed the same pattern for both contaminants with the highest between ďŹddler crabs and clapper rail liver. Hg and PCB transfer factors were similar between sediment to ďŹddler crab and ďŹddler crab to muscle, however the PCB transfer factor from ďŹddler crabs to liver was over twice as large as for Hg. PCB congener proďŹles did not signiďŹcantly differ between media types
Clapper rails as indicators of mercury and PCB bioavailability in a Georgia saltmarsh system
Clapper rails (Rallus longirostris) were used as an indicator species of estuarine marsh habitat quality because of their strong site ďŹdelity and predictable diet consisting of mostly benthic organisms. Mercury (Hg) and the polychlorinated biphenyl (PCB) Aroclor 1268 concentrations were determined for sediments, crabs, as well as clapper rail adults and chicks collected from salt marshes associated with the LCP Superfund site in Brunswick, Georgia. Home ranges were established for adult rails, and sediment and crab samples were taken from each individualâs range. The study was designed to minimize the spatial variability associated with trophic transfer studies by choosing an endpoint species with a potentially small home range and speciďŹcally sampling its foraging range. The mean home range for clapper rails was 1.2 ha with a median of 0.28 ha. Concentrations of Hg and Aroclor 1268 were shown to increase with each trophic level. Transfer factors between media followed the same pattern for both contaminants with the highest between ďŹddler crabs and clapper rail liver. Hg and PCB transfer factors were similar between sediment to ďŹddler crab and ďŹddler crab to muscle, however the PCB transfer factor from ďŹddler crabs to liver was over twice as large as for Hg. PCB congener proďŹles did not signiďŹcantly differ between media types
Gas Accretion and Star Formation Rates
Cosmological numerical simulations of galaxy evolution show that accretion of
metal-poor gas from the cosmic web drives the star formation in galaxy disks.
Unfortunately, the observational support for this theoretical prediction is
still indirect, and modeling and analysis are required to identify hints as
actual signs of star-formation feeding from metal-poor gas accretion. Thus, a
meticulous interpretation of the observations is crucial, and this
observational review begins with a simple theoretical description of the
physical process and the key ingredients it involves, including the properties
of the accreted gas and of the star-formation that it induces. A number of
observations pointing out the connection between metal-poor gas accretion and
star-formation are analyzed, specifically, the short gas consumption time-scale
compared to the age of the stellar populations, the fundamental metallicity
relationship, the relationship between disk morphology and gas metallicity, the
existence of metallicity drops in starbursts of star-forming galaxies, the
so-called G dwarf problem, the existence of a minimum metallicity for the
star-forming gas in the local universe, the origin of the alpha-enhanced gas
forming stars in the local universe, the metallicity of the quiescent BCDs, and
the direct measurements of gas accretion onto galaxies. A final section
discusses intrinsic difficulties to obtain direct observational evidence, and
points out alternative observational pathways to further consolidate the
current ideas.Comment: Invited review to appear in Gas Accretion onto Galaxies, Astrophysics
and Space Science Library, eds. A. J. Fox & R. Dav\'e, to be published by
Springe
Visualization and Curve-Parameter Estimation Strategies for Efficient Exploration of Phenotype Microarray Kinetics
The Phenotype MicroArray (OmniLogÂŽ PM) system is able to simultaneously capture a large number of phenotypes by recording an organism's respiration over time on distinct substrates. This technique targets the object of natural selection itself, the phenotype, whereas previously addressed '-omics' techniques merely study components that finally contribute to it. The recording of respiration over time, however, adds a longitudinal dimension to the data. To optimally exploit this information, it must be extracted from the shapes of the recorded curves and displayed in analogy to conventional growth curves.The free software environment R was explored for both visualizing and fitting of PM respiration curves. Approaches using either a model fit (and commonly applied growth models) or a smoothing spline were evaluated. Their reliability in inferring curve parameters and confidence intervals was compared to the native OmniLogÂŽ PM analysis software. We consider the post-processing of the estimated parameters, the optimal classification of curve shapes and the detection of significant differences between them, as well as practically relevant questions such as detecting the impact of cultivation times and the minimum required number of experimental repeats.We provide a comprehensive framework for data visualization and parameter estimation according to user choices. A flexible graphical representation strategy for displaying the results is proposed, including 95% confidence intervals for the estimated parameters. The spline approach is less prone to irregular curve shapes than fitting any of the considered models or using the native PM software for calculating both point estimates and confidence intervals. These can serve as a starting point for the automated post-processing of PM data, providing much more information than the strict dichotomization into positive and negative reactions. Our results form the basis for a freely available R package for the analysis of PM data
Recommended from our members
Environmental chemistry and cycling processes
Separate abstracts were prepared for the 62 papers presented at the conference. (HLW
Foraging ecology of the endangered wood stork recorded in the stable isotope signature of feathers
Down feathers and regurgitant were collected from nestling wood storks (Mycteria americana) from two inland and two coastal breeding colonies in Georgia. The stable isotopic ratios of carbon ( 13 C/12 C) and nitrogen ( 15N/ 14N) in these materials were analyzed to gain insights into the natal origins of juvenile storks and the foraging activities of adults. Down feathers differed in δ 13 C between inland and coastal colonies, having average isotopic values that reflected the sources of carbon fixed in biomass at the base of the food web. Feathers from the inland colonies differed between colonies in δ 15N, while those from the coastal colonies did not. These patterns primarily reflected the foraging activities of parent storks, with individuals capturing differing percentages of prey of distinct trophic status at each colony. Collectively, the carbon and nitrogen isotopic signatures of feather keratin were used to distinguish nestlings from each colony, except for instances where storks from different colonies foraged in common wetlands. The stable isotopic composition of food items in regurgitant was used to reconstruct the trophic structure of the ecosystems in which wood storks foraged. Predicted foraging activities based on the isotopic composition of keratin were generally consistent with the percentage of prey types (freshwater vs. saltwater and lower trophic level vs. upper trophic level consumer) observed in regurgitant, except for the coastal colony at St. Simons Island, where the δ 13 C of feathers strongly suggested that freshwater prey were a significant component of the diet. This inconsistency was resolved by aerial tracking of adults during foraging excursions using a fixed-wing aircraft. Observed foraging activities supported interpretations based on the stable isotope content of feathers, suggesting that the latter provided a better record of overall foraging activity than regurgitant analysis alone. Observed foraging patterns were compared to the predictions of a statistical model that determined habitat utilization based on habitat availability using a geographic information system (GIS) database. Observed foraging activities and those predicted from feathers both suggested that some adult storks preferred to feed their young freshwater prey, even when saltwater resources were more accessible in the local environment. This conclusion supports the contention that wood stork populations are sensitive to changes in the distribution of freshwater habitats along the southeastern coastal plain of the United States