20 research outputs found

    Robust and Scalable Bayesian Online Changepoint Detection

    Get PDF
    This paper proposes an online, provably robust, and scalable Bayesian approach for changepoint detection. The resulting algorithm has key advantages over previous work: it provides provable robustness by leveraging the generalised Bayesian perspective, and also addresses the scalability issues of previous attempts. Specifically, the proposed generalised Bayesian formalism leads to conjugate posteriors whose parameters are available in closed form by leveraging diffusion score matching. The resulting algorithm is exact, can be updated through simple algebra, and is more than 10 times faster than its closest competitor

    The ridgelet prior: A covariance function approach to prior specification for bayesian neural networks

    Get PDF
    Bayesian neural networks attempt to combine the strong predictive performance of neural networks with formal quantification of uncertainty associated with the predictive output in the Bayesian framework. However, it remains unclear how to endow the parameters of the network with a prior distribution that is meaningful when lifted into the output space of the network. A possible solution is proposed that enables the user to posit an appropriate Gaussian process covariance function for the task at hand. Our approach constructs a prior distribution for the parameters of the network, called a ridgelet prior, that approximates the posited Gaussian process in the output space of the network. In contrast to existing work on the connection between neural networks and Gaussian processes, our analysis is non-asymptotic, with finite sample-size error bounds provided. This establishes the universality property that a Bayesian neural network can approximate any Gaussian process whose covariance function is sufficiently regular. Our experimental assessment is limited to a proof-of-concept, where we demonstrate that the ridgelet prior can out-perform an unstructured prior on regression problems for which a suitable Gaussian process prior can be provided

    Optimally-weighted Estimators of the Maximum Mean Discrepancy for Likelihood-Free Inference

    Get PDF
    Likelihood-free inference methods typically make use of a distance between simulated and real data. A common example is the maximum mean discrepancy (MMD), which has previously been used for approximate Bayesian computation, minimum distance estimation, generalised Bayesian inference, and within the nonparametric learning framework. The MMD is commonly estimated at a root-m rate, where m is the number of simulated samples. This can lead to significant computational challenges since a large m is required to obtain an accurate estimate, which is crucial for parameter estimation. In this paper, we propose a novel estimator for the MMD with significantly improved sample complexity. The estimator is particularly well suited for computationally expensive smooth simulators with low- to mid-dimensional inputs. This claim is supported through both theoretical results and an extensive simulation study on benchmark simulators

    Probabilistic Models for Integration Error in the Assessment of Functional Cardiac Models

    Get PDF
    This paper studies the numerical computation of integrals, representing estimates or predictions, over the output f(x)f(x) of a computational model with respect to a distribution p(dx)p(\mathrm{d}x) over uncertain inputs xx to the model. For the functional cardiac models that motivate this work, neither ff nor pp possess a closed-form expression and evaluation of either requires \approx 100 CPU hours, precluding standard numerical integration methods. Our proposal is to treat integration as an estimation problem, with a joint model for both the a priori unknown function ff and the a priori unknown distribution pp. The result is a posterior distribution over the integral that explicitly accounts for dual sources of numerical approximation error due to a severely limited computational budget. This construction is applied to account, in a statistically principled manner, for the impact of numerical errors that (at present) are confounding factors in functional cardiac model assessment

    Bayesian quadrature for multiple related integrals

    No full text
    Bayesian probabilistic numerical methods are a set of tools providing posterior distributions on the output of numerical methods. The use of these methods is usually motivated by the fact that they can represent our uncertainty due to incomplete/finite information about the continuous mathematical problem being approximated. In this paper, we demonstrate that this paradigm can provide additional advantages, such as the possibility of transferring information between several numerical methods. This allows users to represent uncertainty in a more faithful manner and, as a by-product, provide increased numerical efficiency. We propose the first such numerical method by extending the well-known Bayesian quadrature algorithm to the case where we are interested in computing the integral of several related functions. We then prove convergence rates for the method in the well-specified and misspecified cases, and demonstrate its efficiency in the context of multi-fidelity models for complex engineering systems and a problem of global illumination in computer graphics

    Convergence guarantees for gaussian process means with misspecified likelihoods and smoothness

    No full text
    Gaussian processes are ubiquitous in machine learning, statistics, and applied mathematics. They provide a exible modelling framework for approximating functions, whilst simultaneously quantifying uncertainty. However, this is only true when the model is well-specifoed, which is often not the case in practice. In this paper, we study the properties of Gaussian process means when the smoothness of the model and the likelihood function are misspecified. In this setting, an important theoretical question of practical relevance is how accurate the Gaussian process approximations will be given the chosen model and the extent of the misspecification. The answer to this problem is particularly useful since it can inform our choice of model and experimental design. In particular, we describe how the experimental design and choice of kernel and kernel hyperparameters can be adapted to alleviate model misspecification

    Convergence rates for a class of estimators based on Stein’s method

    Get PDF
    Gradient information on the sampling distribution can be used to reduce the variance of Monte Carlo estimators via Stein’s method. An important application is that of estimating an expectation of a test function along the sample path of a Markov chain, where gradient information enables convergence rate improvement at the cost of a linear system which must be solved. The contribution of this paper is to establish theoretical bounds on convergence rates for a class of estimators based on Stein’s method. Our analysis accounts for (i) the degree of smoothness of the sampling distribution and test function, (ii) the dimension of the state space, and (iii) the case of non-independent samples arising from a Markov chain. These results provide insight into the rapid convergence of gradient-based estimators observed for low-dimensional problems, as well as clarifying a curse-of-dimension that appears inherent to such methods

    Generalized Bayesian Inference for Discrete Intractable Likelihood

    No full text
    Discrete state spaces represent a major computational challenge to statistical inference, since the computation of normalization constants requires summation over large or possibly infinite sets, which can be impractical. This article addresses this computational challenge through the development of a novel generalized Bayesian inference procedure suitable for discrete intractable likelihood. Inspired by recent methodological advances for continuous data, the main idea is to update beliefs about model parameters using a discrete Fisher divergence, in lieu of the problematic intractable likelihood. The result is a generalized posterior that can be sampled from using standard computational tools, such as Markov chain Monte Carlo, circumventing the intractable normalizing constant. The statistical properties of the generalized posterior are analyzed, with sufficient conditions for posterior consistency and asymptotic normality established. In addition, a novel and general approach to calibration of generalized posteriors is proposed. Applications are presented on lattice models for discrete spatial data and on multivariate models for count data, where in each case the methodology facilitates generalized Bayesian inference at low computational cost. Supplementary materials for this article are available online

    Frank-Wolfe Bayesian quadrature: Probabilistic integration with theoretical guarantees

    Get PDF
    There is renewed interest in formulating integration as an inference problem, motivated by obtaining a full distribution over numerical error that can be propagated through subsequent computation. Current methods, such as Bayesian Quadrature, demonstrate impressive empirical performance but lack theoretical analysis. An important challenge is to reconcile these probabilistic integrators with rigorous convergence guarantees. In this paper, we present the first probabilistic integrator that admits such theoretical treatment, called Frank-Wolfe Bayesian Quadrature (FWBQ). Under FWBQ, convergence to the true value of the integral is shown to be exponential and posterior contraction rates are proven to be superexponential. In simulations, FWBQ is competitive with state-of-the-art methods and out-performs alternatives based on Frank-Wolfe optimisation. Our approach is applied to successfully quantify numerical error in the solution to a challenging model choice problem in cellular biology

    High- and low-load strength training to failure in trained men and women A study investigating changes in muscle strength, muscle fiber size, satellite cells and myonuclear number in skeletal muscle after an eight-week period of strength training

    No full text
    Markov chain Monte Carlo methods have revolutionized mathematical computation and enabled statistical inference within many previously intractable models. In this context, Hamiltonian dynamics have been proposed as an efficient way of building chains that can explore probability densities efficiently. The method emerges from physics and geometry, and these links have been extensively studied over the past thirty years. The aim of this review is to provide a comprehensive introduction to the geometric tools used in Hamiltonian Monte Carlo at a level accessible to statisticians, machine learners, and other users of the methodology with only a basic understanding of Monte Carlo methods. This will be complemented with some discussion of the most recent advances in the field, which we believe will become increasingly relevant to scientists
    corecore