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Gradient information on the sampling distribution can be used to reduce the variance of Monte Carlo esti-
mators via Stein’s method. An important application is that of estimating an expectation of a test function
along the sample path of a Markov chain, where gradient information enables convergence rate improve-
ment at the cost of a linear system which must be solved. The contribution of this paper is to establish
theoretical bounds on convergence rates for a class of estimators based on Stein’s method. Our analysis
accounts for (i) the degree of smoothness of the sampling distribution and test function, (ii) the dimension
of the state space, and (iii) the case of non-independent samples arising from a Markov chain. These re-
sults provide insight into the rapid convergence of gradient-based estimators observed for low-dimensional
problems, as well as clarifying a curse-of-dimension that appears inherent to such methods.
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1. Introduction

This paper considers methods to estimate the integral

∫
f d�

of a test function f against a distribution � based on evaluation of f at a finite number n

of inputs. Our work is motivated by challenging settings in which (i) the variance σ 2(f ) =∫
(f − ∫

f d�)2 d� is large relative to n, and (ii) the distribution � is only available up to
an unknown normalisation constant. Such problems arise in Bayesian statistics when the cost of
sampling from the posterior is prohibitive, requiring that posterior expectations are approximated
based on a small number n of evaluations of the integrand. Indeed, the intrinsic accuracy of
ergodic averages, such as obtained via Markov chain Monte Carlo (MCMC) methods [37], can
lead to unacceptably high integration error when n is small. This paper considers a class of
estimators inspired by Stein’s method [41], based on integration-by-parts in this context:

∫
f d� = −

∫ (∫
f dx

)
· d

dx
logπ d�, (1)
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subject to boundary conditions, where π is a density for �. These estimators ensure an inte-

gration error oP(n− 1
2 ), provided that gradient information on the sampling distribution can be

obtained. This is often the case; indeed, sophisticated software for automatic differentiation of
statistical models has been developed (e.g., [9,25]).

Main contribution

The primary contribution of this paper is to establish convergence rates for a class of estimators
based on Stein’s method. These estimators, first described in [35], require as input both function
evaluations {f (xi )}ni=1 and gradient evaluations {∇ logπ(xi )}ni=1, where the states {xi}ni=1 them-
selves can be either independent or correlated draws from �. Our central results are asymptotic
rates for integration error; these enable us to compare and quantify the improvement in estimator
precision relative to standard Monte Carlo methods and in doing so we fill a theoretical void.

The estimators that we consider can be viewed as a control variate (or ‘control functional’)
method, and this concept is discussed next.

Control functionals

The classical control variate method proceeds by seeking a collection of non-trivial statistics
{ψi}ki=1, such that each satisfies

∫
ψi d� = 0. Then a surrogate function

f ′ = f − a1ψ1 − · · · − akψk

is constructed such that automatically
∫

f ′ d� = ∫
f d� and, for suitably chosen {ai}ki=1, a

variance reduction σ 2(f ′) < σ 2(f ) might be obtained; for further details see, for example, [39].
For specific problems it is sometimes possible to identify control variates, for example based
on physical considerations (e.g., [3]). For Monte Carlo integration based on Markov chains,
it is sometimes possible to construct control variates based on statistics relating to the sample
path. In this direction, the problem of constructing control variates for discrete state spaces was
essentially solved by [1] and for continuous state spaces, recent contributions include [14,20,22,
29,30]. Control variates can alternatively be constructed based on gradient information on the
sampling distribution [2,31,35,36].

The estimators considered here stem from a recent development that extends control variates
to control functionals. This idea is motivated by the observation that the methods listed above are
(in effect) solving a misspecified regression problem, since in general f does not belong to the
linear span of the statistics {ψi}ki=1. The recent work by [29,35] alleviates model misspecification
by increasing the number k of statistics alongside the number n of samples so that the limiting
space spanned by the statistics {ψi}∞i=1 is dense in a class of functions that contains the test
function f of interest. Both methods provide a non-parametric alternative to classical control

variates whose error is oP(n− 1
2 ). Of these two proposed solutions, [29] is not considered here

since it is unclear how to proceed when � is known only up to a normalisation constant. On
the other hand, the control functional method of [35] is straight-forward to implement when
gradients {∇ logπ(xi )}ni=1 are provided. Understanding the theoretical properties of this method
is the focus of the present research.
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Technical contribution

This paper establishes that the estimators of [35] incur an integration error OP(n− 1
2 − a∧b

d
+ε),

where a is related to the smoothness of the density π , b is related to the smoothness of the
test function f , d is the dimension of the domain of integration and ε > 0 can be arbitrarily
small (a notational convention used to hide logarithmic factors). This analysis provides important
insight into the strong performance that has been observed for these estimators in certain low-
dimensional applications [23,35]. Indeed, recall that the (naïve) computational cost associated
with these methods, that is, the cost of solving a linear system, is c = O(n3). This cost can also
involve a large constant factor when hyper-parameters are to be jointly estimated. Thus, whilst for

standard Monte Carlo methods an estimator error of OP(c− 1
2 ) can be achieved at computational

cost c, for gradient-based control functionals

error for cost c = OP
((

c
1
3
)− 1

2 − a∧b
d

+ε) = OP
(
c− 1

6 + d−a∧b
3d

+ε
)
.

This demonstrates that gradient-based control functionals have asymptotically lower error for the
same fixed computational cost c whenever a ∧ b > d , which occurs when both the density π and
the test function f are sufficiently smooth. In the situation where the computational bottleneck is
evaluation of f , not solution of the linear system, then the computational gain can be even more
substantial. At the same time, the critical dependence on d highlights the curse-of-dimension that
appears inherent to such methods. Going forward, these results provide a benchmark for future
high-dimensional development.

Relation to other acceleration methods

Accelerated rates of convergence can be achieved by other means, including quasi-Monte Carlo
(QMC; [33]). Consider the ratio estimator:

∫
f d� ≈

1
n

∑n
i=1 f (xi )π(xi )

1
n

∑n
i=1 π(xi )

. (2)

For appropriate randomised point sets {xi}ni=1, the ratio estimator converges at a rate limited by
the least smooth of f · π and f , that is, limited by a∧b

d
(at least, in the absence of additional

conditions on the mixed partial derivatives, which we have not assumed).5 See [16] for a recent
study of this approach in the context of Bayesian inference for an unknown parameter in a partial
differential equation model.

The method studied herein can be contrasted with QMC methods in at least two respects:
(1) The states {xi}ni=1 can be independent (or correlated) draws from �, which avoids the need
to specifically construct a point set. This is an important benefit in cases where the domain of

5In this section the notation a and b is used as a shorthand for the “smoothness” of, respectively, π and f . The precise
mathematical definition of a and b differs between manuscripts and the results discussed here should not be directly
compared.
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integration is complicated – indeed, our results hold for any domain of integration for which an
interior cone condition can be established. (2) The estimator studied herein is unbiased, whereas
ratio estimators of the form in Eq. (2) will be biased in general. The unbiased nature of the
estimator, in common with standard Monte Carlo methods, facilitates convenient diagnostics to
estimate the extent of Monte Carlo error and is therefore useful.

Recent work from [15] and [4] considered estimators of the form

∫
f d� ≈ 1

n

n∑
i=1

f (xi )

π̂(xi )
, (3)

where π̂ is a kernel density estimate for π = d�/d� based on a collection of (possibly corre-

lated) draws {xi}ni=1 from �. Again, theoretical results established an error of oP(n− 1
2 ) with an

explicit rate gated by a term of the form a∧b
d

. However, this approach applies to integrals with
respect to a known, normalised reference measure � rather than with respect to �.

Outline

Below in Section 2 we describe the class of estimators that were considered and present our main
theoretical results, including the case of non-independent samples arising from a Markov chain
sample path. Our theoretical analysis combines error bounds from the scattered data approxi-
mation literature with stability results for Markov chains; proofs are contained in the electronic
supplement [34]. Numerical results in Section 3 confirm these error rates are realised. Finally,
the importance of our findings is discussed in Section 4.

2. Methods

First, we fix notation before describing the estimation method.

2.1. Set-up and notation

Consider an open and bounded set X ⊂ R
d , d ∈ N, with boundary ∂X . Let B = B(X ∪ ∂X )

denote the Borel σ -algebra on X ∪ ∂X and equip (X ∪ ∂X ,B) with the reference measure �

induced from the restriction of Lebesgue measure on R
d . Further, consider a random variable X

on X ∪ ∂X with distribution � and suppose � admits a density π = d�/d�.
The following notation will be used: N0 := N ∪ {0}, a ∧ b := min(a, b), a+ := max(a,0),

1 = [1, . . . ,1]
, ‖x‖2
2 := ∑d

i=1 x2
i , ∇x := [∂/∂x1, . . . , ∂/∂xd ]
, 1A(x) = 1 is the indicator of

the event x ∈ A. Write L2(X ,�) for the vector space of measurable functions f : X → R for
which σ 2(f ) := ∫

(f − ∫
f d�)2 d� exists and is finite. Write Ck(X ) for the set of measurable

functions for which continuous partial derivatives exist on X up to order k ∈ N0. A function
g : X × X → R is said to be in Ck

2 (X ) if ∂2kg/∂xi1 · · ·∂xik ∂x′
j1

· · ·∂x′
jk

is C0(X × X ) for all
i1, . . . , ik, j1, . . . , jk ∈ {1, . . . , d}. The notation ‖f ‖∞ := supx∈X |f (x)| will be used.
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2.2. Control functionals

This section introduces the control functional method for integration, a non-parametric exten-
sion of the classical control variate method. Recall that the trade-off between random sampling
and deterministic approximation in the context of integration is well-understood [5]. Our start-
ing point is, in a similar vein, to establish a trade-off between random sampling and stochastic
approximation.

We assume throughout that the test function f belongs to L2(X ,�) and that the boundary
∂X is piecewise smooth. Consider an independent sample from �, denoted D = {xi}ni=1. This is
partitioned into disjoint subsets D0 = {xi}mi=1 and D1 = {xi}ni=m+1, where 1 ≤ m < n. Although
m, n are fixed, we will be interested in the asymptotic regime where m = O(nγ ) for some γ ∈
[0,1]. Consider constructing an approximation fm ∈ L2(X ,�) to f , based on D0. Stochasticity
in fm is induced via the sampling distribution of elements in D0. The integral

∫
fm d� is required

to be analytically tractable; we will return to this point.
The estimators that we study take the form

Im,n := 1

n − m

n∑
i=m+1

f (xi ) −
(

fm(xi ) −
∫

fm d�

)
. (4)

Such sample-splitting estimators are unbiased, i.e. ED1[Im,n] = ∫
f d�, where the expectation

here is with respect to the sampling distribution � of the n − m random variables that constitute
D1, and is conditional on fixed D0. The corresponding estimator variance, again conditional on
D0, is VD1[Im,n] = (n − m)−1σ 2(f − fm). This formulation encompasses control variates as a
special case where fm = a1ψ1 + · · · + akψk , k ∈ N, and D0 are used to select suitable values for
the coefficients {ai}ki=1 (see e.g. [39]).

To go beyond control variates and achieve an error of oP(n−1/2), we must construct in-
creasingly accurate approximations fm to f . Indeed, under the scaling m = O(nγ ), if the ex-
pected functional approximation error satisfies ED0[σ 2(f − fm)] = O(m−δ) for some δ ≥ 0,
then

ED0ED1

[(
Im,n −

∫
f d�

)2]
= O

(
n−1−γ δ

)
. (5)

Here we have written ED0 for the expectation with respect to the sampling distribution � of the
m random variables that constitute D0. The rate above is optimised by taking γ = 1, so that an
optimal sample-split satisfies m/n → ρ for some ρ ∈ (0,1] as n → ∞; this will be assumed in
the sequel.

When � is given via an un-normalised density, this framework can only be exploited if it is
possible to construct approximations fm whose integrals

∫
fm d� are available in closed-form.

If and when this is possible, the term in parentheses in Eq. (4) is known as a control functional.
[35] showed how to build a flexible class of control functionals based on Stein’s method; the key
points are presented next.
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2.3. Stein operator

To begin, we make the following assumptions on the density π :

(A1) π ∈ Ca+1(X ∪ ∂X ) for some a ∈N0.
(A2) π > 0 in X .

The gradient function ∇x logπ(·) is well-defined and Ca(X ∪∂X ) by (A1,2). Crucially, gradients
can be evaluated even when π is only available un-normalised. Consider the following Stein
operator:

Sπ : C1(X ) × · · · × C1(X ) → C0(X )

φ(·) �→ Sπ [φ](·) := ∇x · φ(·) + φ(·) · ∇x logπ(·).
(6)

This definition can be motivated in several ways, including via Schrödinger Hamiltonians [2]
and via the generator method of Barbour applied to an overdamped Langevin diffusion [18]. The
choice of Stein operator is not unique and some alternatives are listed in [17].

For functional approximation we follow [35] and study approximations of the form

fm(·) := β + Sπ [φ](·), (7)

where β ∈R is a constant and Sπ [φ](·) acts as a flexible function, parametrised by the choice of
φ ∈ C1(X )× · · · ×C1(X ). Under regularity assumptions introduced below, integration-by-parts
(Eq. (1)) can be applied to obtain

∫
Sπ [φ]d� = 0 (Lemma 1). Thus, for this class of functions,∫

fm d� permits a trivial closed-form and Sπ [φ] is a control functional (i.e., integrates to 0).
The choice of β and φ can be cast as an optimisation problem over a Hilbert space and this

will be the focus next.

2.4. Stein operators on Hilbert spaces

This section formulates the construction of fm as approximation in a Hilbert space H+ ⊂
L2(X ,�). This construction first appeared in [35] and was subsequently explored in several
papers (e.g., [10,19,24]).

First, we restrict each component function φi : X → R to belong to a Hilbert space H with
inner product 〈·, ·〉H. Moreover, we insist that H is a (non-trivial) reproducing kernel Hilbert
space (RKHS), that is, there exists a (non-zero) symmetric positive definite function k : X ×
X → R such that (i) for all x ∈ X we have k(·,x) ∈ H and (ii) for all x ∈ X and h ∈ H we
have h(x) = 〈h, k(·,x)〉H (see [6], for background). The vector-valued function φ : X → R

d is
defined in the Cartesian product space Hd := H × · · · ×H, itself a Hilbert space with the inner
product 〈φ,φ′〉Hd = ∑d

i=1〈φi,φ
′
i〉H.

To ensure H ⊆ C1(X ), we make an assumption on k that will be enforced by construction
through selection of the kernel:

(A3) k ∈ Cb+1
2 (X ∪ ∂X ) for some b ∈N0.
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2.4.1. Boundary conditions

Two further assumptions are made on π . To this end, denote by Q(k) the set of densities q =
dQ/d� on (X ∪∂X ,B) such that (a) q ∈ C1(X ∪∂X ), (b) q > 0 in X , and (c) for all i = 1, . . . , d

we have ∇xi
logq ∈ L2(X ∪ ∂X ,Q′) for all distributions Q′ on (X ∪ ∂X ,B). Let R(k) denote

the set of densities q for which q(x)k(x, ·) = 0 for all x ∈ ∂X .

(A2̄) π ∈ Q(k).
(A4) π ∈ R(k).

The assumption (A2̄) was first discussed in [10]; note in particular that (A2̄) implies (A2). A con-
structive approach to ensure (A4) holds is to start with an arbitrary RKHS H̃ with reproducing
kernel k̃ and let B : H̃ → im(B) be a linear operator such that Bϕ(x) := δ(x)ϕ(x), where δ(·) is
a smooth function such that π(·)δ(·) vanishes on ∂X . Then H = im(B) is a RKHS whose kernel
k is defined by k(x,x ′) = δ(x)δ(x ′)k̃(x,x′). This construction will be used in Section 3. The
following lemma shows that Sπ [φ] is a control functional.

Lemma 1. Under (A1–4), if φ ∈ Hd then
∫
Sπ [φ]d� = 0.

Now, consider the set H0 := Sπ [Hd ], whose elements Sπ [φ] result from application of the
Stein operator Sπ to elements φ of the Hilbert space Hd . Oates et al. [35], Theorem 1, showed
that H0 can be endowed with the gradient-based reproducing kernel

k0
(
x,x′) := (∇x · ∇x′)k

(
x,x′) + (∇x logπ(x)

) · (∇x′k
(
x,x′))

+ (∇x′ logπ
(
x′)) · (∇xk

(
x,x′)) + (∇x logπ(x)

) · (∇x′ logπ
(
x′))k(

x,x′). (8)

From (A1, 2̄, 3), it follows that H0 ⊆ Ca∧b(X ∪ ∂X ). Moreover, under (A1, 2̄, 3, 4), the kernel
k0 satisfies

∫
k0(x,x′)�(dx) = 0 for all x′ ∈ X . Indeed, the function k0(·,x′) belongs to H0 by

definition and Lemma 1 shows that all elements of H0 have zero integral.

2.4.2. Approximation in H+
Now we can be specific about how β and φ are selected. Write HR for the RKHS of constant
functions, characterised by the kernel kR(x,x′) = c, c > 0, for all x,x′ ∈ X . Denote the norms
associated to HR and H0 respectively by ‖ · ‖HR

and ‖ · ‖H0 . Write

H+ := HR +H0 = {β + ψ : β ∈ HR,ψ ∈ H0}.
Equip H+ with the norm ‖f ‖2

H+ := ‖β‖2
HR

+ ‖ψ‖2
H0

. It can be shown that H+ is a RKHS with
kernel k+(x,x′) := kR(x,x′)+k0(x,x′) ([6], Theorem 5, page 24). From (A1–3), it follows that
H+ ⊆ Ca∧b(X ).

The choice of β and φ is cast as a least-squares optimisation problem:

fm := arg min‖h‖2
H+ s.t. ∀i = 1, . . . ,m, h(xi ) = f (xi ), h ∈H+.

By the representer theorem [40], we have fm(x) = ∑m
i=1 aik+(x,xi ) where the coefficients a =

[a1, . . . , am]
 are the solution of the linear system K+a = f0 where K+ ∈ R
m×m, [K+]i,j =
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k+(xi ,xj ), f0 ∈R
m×1, [f+]i = f (xi ). In situations where K+ is not full-rank, we define fm ≡ 0.

Numerical inversion of this system is associated with a O(m3) cost and may in practice require
additional numerical regularisation; this is relatively standard.

2.5. Theoretical results

Our novel analysis, next, builds on results from the scattered data approximation literature [45]
and the study of the stability properties of Markov chains [26].

2.5.1. The case of independent samples

First, we focus on scattered data approximation and state two assumptions that are central to our
analysis:

(A5) π > 0 on X ∪ ∂X .
(A6) f ∈H+.

Here (A5) extends (A2) in requiring also that π > 0 on ∂X . (A6) ensures that the problem is
well-posed. Define the fill distance

hD0 := sup
x∈X

min
i=1,...,m

‖x − xi‖2.

The proof strategy that we present here decomposes into two parts; (i) first, error bounds are
obtained on the functional approximation error σ 2(f − fm) in terms of the fill distance hD0 ,
(ii) second, the fill distance hD0 is shown to vanish under sampling (with high probability).
For (ii) to occur, we require an additional constraint on the geometry of X :

(A7) The domain X ∪ ∂X satisfies an interior cone condition, that is, there exists an angle
θ ∈ (0,π/2) and a radius r > 0 such that for every x ∈X ∪ ∂X there exists a unit vector
ξ such that the cone

C(x, ξ , θ, r) := {
x + λy : y ∈R

d,‖y‖2 = 1,y
ξ ≥ cos θ,λ ∈ [0, r]}

is contained in X ∪ ∂X .

The purpose of (A7) is to rule out the possibility of ‘pinch points’ on ∂X (i.e., ≺-shaped regions),
since intuitively sampling-based approaches can fail to ‘get into the corners’ of the domain. The
limiting behaviour of the fill distance under sampling enters through the following technical
result:

Lemma 2. Let g : [0,∞) → [0,∞) be continuous, monotone increasing, and satisfy g(0) = 0
and limx↓0 g(x) exp(x−3d) = ∞. Then under (A5,7) we have

ED0

[
g(hD0)

] = O
(
g
(
m− 1

d
+ε

))
,

where ε > 0 can be arbitrarily small.
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Our first main result can now be stated as the following.

Theorem 1. Assume (A1, 2̄, 3–7). Recall that we partition the set D as D0 ∪D1 where |D0| = m

and |D1| = n − m. There exists h > 0, independent of m,n, such that the estimator Im,n is an
unbiased estimator of

∫
f d� with

ED0ED1

[
1hD0<h

(
Im,n −

∫
f d�

)2]
= O

(
(n − m)−1m−2 a∧b

d
+ε

)
,

where ε > 0 can be arbitrarily small.

Thus for m = O(n), this result establishes an overall error of O(n−1−2 a∧b
d

+ε), as claimed.
This establishes that these estimates are more efficient than standard Monte Carlo estimators
when a ∧ b > 0. Or, when the cost of solving a linear system is taken into account, the method
is more efficient on a per-cost basis when a ∧ b > d . This provides new insight into the first
set of empirical results reported in [35] where, for assessment purposes, samples were generated
independently from known, smooth densities. There, control functionals were constructed based
on smooth kernels and integration errors were shown to be substantially reduced.

On the negative side, this result illustrates a curse of dimension that appears to be intrinsic to
the method. We return to this point in Section 4.

The results above hold for independent samples, yet the main area of application for control
functionals is estimation based on the MCMC output. In the next section, we prove that the
assumption of independence can be relaxed.

2.5.2. The case of non-independent samples

In practice, samples from posterior distributions are often obtained via MCMC methods. Our
analysis must therefore be extended to the non-independent setting: Consider the case where
{xi}ni=1 are generated by a reversible Markov chain targeting �. We make the following stochas-
tic stability assumption:

(A8) The Markov chain is uniformly ergodic.

Then our first step is to extend Lemma 2 to the non-independent setting.

Lemma 3. The conclusion of Lemma 2 holds when {xi}ni=1 are generated via MCMC, subject to
(A8).

Non-independence presents us with the possibility that two of the states xi ,xj ∈ D0 are iden-
tical (for instance, when a Metropolis–Hastings sample is used and a rejection occurs). Under
our current definition, such an event would cause the kernel matrix K+ to become singular and
the control functional to become trivial fm = 0. It is thus necessary to modify the construction.
Specifically, we assume that D0 has been pre-filtered such that any repeated states have been re-
moved. Note that this does not ‘introduce bias’, since we are only pre-filtering D0, not D1. This
reduces the effective number m of points in D0 by at most a constant factor and has no impact
on the asymptotics.

With this technical point safely surmounted, we present our second main result.
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Theorem 2. The conclusion of Theorem 1 holds when {xi}ni=1 are generated via MCMC, subject
to (A8).

This result again demonstrates that control functionals are more cost-efficient than standard
Monte Carlo when a ∧ b > d and that efficiency is limited by the rougher of the density π and
the test function f . This helps to explain the second set of empirical results obtained in [35],
where excellent performance was reported on problems that involved smooth densities, smooth
kernels and MCMC sampling methods. On the other hand, we again observe a curse of dimension
that is inherent to control functionals and, indeed, control variates in general.

2.6. Commentary

Several points of discussion are covered below, on the appropriateness of the assumptions, the
strength of the results and aspects of implementation.

On the assumptions

Assumptions (A1, 2̄, 3, 7) are not unduly restrictive. The boundary condition (A4) has previously
been discussed in [35]. Below we discuss the remaining assumptions, (A5, 6, 8).

Our entire analysis was predicated on (A5), the assumption that π is bounded away from
0 on the compact set X ∪ ∂X . This ensured that π was equivalent to Lebesgue measure on
X ∪ ∂X and enabled this change of measure in the proofs. This is clearly a restrictive set-up as
certain distributions of interest do vanish, however the assumption was intrinsic to our theoretical
approach.

Our analysis also relied on (A6), that is, that f belongs to the function space H+. It it is thus
natural to examine this assumption in more detail. To this end, we provide the following lemma.
Recall that a RKHS H is c-universal if it is dense as a set in (C0(X ∪ ∂X ),‖ · ‖∞).

Lemma 4. Assume (A2̄, 3, 4). If H is c-universal, then H+ is dense as a set in (L2(X ∪ ∂X ,�),

‖ · ‖2).

The notion of c-universality was introduced by [42], who showed that many widely-used ker-
nels are c-universal on compact sets. Indeed, Proposition 1 of [27] proves that a RKHS with
kernel k is c-universal if and only if the map �′ �→ �′[k(·, ·)], from the space of finite signed
Borel measures �′ to the RKHS H, is injective, which is a weak requirement. It is not, however,
clear whether (A4), (A5) can both hold when k is also c-universal. Further work will therefore
be required to better assess the consequences of f /∈ H+. This might proceed in a similar vein to
the related work of [21,32].

The last assumption to discuss is (A8); uniform ergodicity of the Markov chain. Since π is
absolutely continuous with respect to Lebesgue measure on X ∪ ∂X , in practice any Markov
chain that targets � will typically be uniformly ergodic. Indeed, [38] constructed an example
where a pinch point in the domain caused a Gibbs sampler targeting a uniform distribution to fail
to be geometrically ergodic; their construction violates our (A7).
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On the results

The intuition for the results in Theorems 1 and 2 can be described as ‘accurate estimation with
high probability’, since the condition hD0 < h is satisfied when the samples D0 cover the state
space X , which occurs with unit probability in the m → ∞ limit. There are two equivalent
statements that can be made unconditionally on hD0 < h: (i) First, one can simply re-define
fm = 0 whenever h ≥ h0, that is, when the states D0 are poorly spaced we revert to the usual
Monte Carlo estimator. (ii) Second, one could augment D0 with additional fixed states, such as
a grid, {gi}Gi=1, to ensure that hD0 < h is automatically satisfied. However, we find both of these
equivalent approaches to be less aesthetically pleasing, since in practice this requires that h be
explicitly computed.

The condition hD0 < h suggests that the asymptotics hold in the same regime where QMC
methods could also be successful. However, as explained in Section 1, the method of [35] carries
some advantages over the QMC approach that could be important. First, it provides unbiased
estimation of

∫
f d�, which enables straight-forward empirical assessment. Second, the fact

that it is based on MCMC output renders it more convenient to implement.
On the sharpness of our results, we refer to Section 11.7 of [45] where an overview of the

strengths and weaknesses of results in the scattered data approximation literature is provided.

On the data-split

It is required to partition samples into sets D0 and D1, whose sizes must be specified. Substituting
ρ = m/n into the conclusion of Theorem 1 and minimising this expression over ρ ∈ (0,1] leads
to an optimal value

ρ∗ = ν

1 + ν
where ν = 2

a ∧ b

d
. (9)

Thus, when a ∧b � d we have ρ∗ ≈ 1 and the optimal method is essentially a numerical quadra-
ture method (i.e., all samples assigned to D0). Conversely, when a ∧ b � d we have ρ∗ ≈ 0 and
the optimal method becomes a Monte Carlo method (i.e., all samples assigned to D1).

On the bandwidth

For the experiments reported next, we considered radial kernels of the form

k̃
(
x,x′) = ϕ

(‖x − x′‖2

h

)
,

where h > 0 is a bandwidth parameter and ϕ is a radial basis function, to be specified. An
appropriate value for the bandwidth h must therefore be selected. An important consideration is
that if h is selected based on D0 but not on D1 then the estimator Im,n remains unbiased. To this
end, we propose to select h via maximisation of the log-marginal likelihood

logp(f0|D0, h) = −1

2
f
0 K−1+ f0 − 1

2
log |K+| − m

2
log 2π

which arises from the duality with Gaussian processes and approximation in RKHS (see e.g.,
[6]).
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On an extension

An extension of the estimation method was also considered. Namely, for each i one can build an
approximation f (−i) ∈ H+ to be used as a control functional for f (xi ), based on D \ {xi}. This
results in a leave-one-out (LOO) estimator

In := 1

n

n∑
i=1

f (xi ) −
(

f (−i)(xi ) −
∫

f (−i) d�

)
(10)

that again remains unbiased. The performance of In can be expected to compare favourably with
that of Im,n, but the computational cost of In is larger at O(n4).

On computation

It is important to emphasise the ease with which these estimators can be implemented. In the
c → ∞ limit, explicit evaluation of Eq. (4) is particularly straight-forward:

Im,n = 1

n − m
1


{
f1 − K10K−1

0

[
f0 −

(
1
K−1

0 f0

1
K−1
0 1

)
1
]}

, (11)

where f1 ∈ R
n−m×1, [f1]i = f (xm+i ), K0 ∈ R

m×m, [K0]i,j = k0(xi ,xj ), K10 ∈ R
n−m×m

and [K10]i,j = k0(xm+i ,xj ). In a sense, this expression generalises the usual kernel
quadrature estimator to obtain an estimator that is unbiased [7,8]. An implementation called
control_func.m is available on the Matlab File Exchange to download.

3. Numerical results

First, in Section 3.1, we assessed whether the theoretical results are borne out in simulation ex-
periments. Then, in Section 3.2, we applied the method to a topical parameter estimation problem
in uncertainty quantification for a groundwater flow model.

3.1. Simulation

To construct a test-bed for the theoretical results, we considered the simple case where � is the
uniform distribution on X = [0,1]d . The test functions that we considered took the form f (x) =
1 + sin(2πωx1) where ω was varied to create a problem that was either ‘easy’ (ω = 1) or ‘hard’
(ω = 3). The importance of the first coordinate x1 aimed to reflect the ‘low effective dimension’
phenomena that is often encountered. From symmetry of the integrand, the true integral is 1.

For estimation, we took the radial basis function ϕ to have variable smoothness and compact
support, as studied in [44]. Explicit formulae for the ϕ and their derivatives are contained in the
electronic supplement. To enforce (A4), we took δ(x) = ∏d

i=1 xi(1 − xi) which vanishes on ∂X .
The data-split fraction ρ and the bandwidth h were each optimised as described in Section 2.6.
Optimisation for h was performed through 10 iterations of the Matlab function fminbnd con-
strained to h ∈ [0,10].
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Three estimators were considered; the standard Monte Carlo estimator, the control functional
(CF) estimator Im,n in Eq. (11) and the LOO estimator In. In the case of the LOO estimator,
the bandwidth h was re-optimised in building each of the n control functionals f (−i). (A1, 2̄,
3–5, 7) were satisfied in this experiment. Thus, for f ∈ H+, Theorem 1 entails a mean squared

integration error for Im,n of O(n−1−2 b
d
+ε), since π(x) = 1 ∈ Ca+1 for all a ∈ N0. However, the

theoretical analysis does not take into account automatic selection of the bandwidth h; this will
be assessed through experiment.

Independent samples

To study estimator performance, we repeatedly generated collections of n independent uniform
random variables {xi}ni=1 and evaluated all three estimators on this set. The procedure was re-
peated several times to obtain estimates (along with standard errors) for the average mean square
errors (MSE) that were incurred. Results are displayed in Figure 1. In these experiments, the MSE
appeared to decrease at least as rapidly as the rates that were predicted. Also, as predicted, the es-

Figure 1. Simulation results; the case of independent samples. An ‘easy’ and a ‘hard’ integrand were
considered. The mean square error (MSE) was estimated for the standard Monte Carlo estimator, the control
functional (CF) estimator Im,n and the leave-one-out (LOOCF) estimator In, and plotted against the number
n of samples used. The CF and LOOCF estimators were based on kernels of smoothness b ∈ {1,2,3}.
Standard errors are also displayed.
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timator performance quickly deteriorated as the dimension d was increased. Indeed, for d = 3,4
an improvement over standard Monte Carlo was no longer observed. The LOO estimator In in
general out-performed the CF estimator Im,n, as expected, but at an increased computational cost.
The integration error was in general larger for the hard integrand.

Dependent samples

The effect of correlation among the xi was also explored. For this, we considered a random walk
xi = xi−1 + ei on the d-torus with {ei}ni=1 drawn uniformly on [−ε, ε]d and x0 = 0. This is a
Markov chain with invariant distribution �. The objective was to assess estimator performance
as a function of the step size parameter ε; results for n = 100 are shown in Figure 2. Compared to
Figure 1, the MSE was larger in general when ε < 0.5. This reflects reduction in effective sample
size of the set D0 used to build the control functional.

Figure 2. Simulation results; the case of dependent samples. An ‘easy’ and a ‘hard’ integrand were con-
sidered. The mean square error (MSE) was estimated for the standard Monte Carlo estimator, the control
functional (CF) estimator Im,n and the leave-one-out (LOOCF) estimator In, where samples from a ran-
dom walk of length n = 100 was used. The MSE was plotted against the step size ε of the random walk.
The CF and LOOCF estimators were based on kernels of smoothness b ∈ {1,2,3}. Standard errors are also
displayed.
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3.2. Application to partial differential equations

Our theoretical results are illustrated with a novel application to an inverse problem arising in
a partial differential equation (PDE) model. Specifically, we considered the following elliptic
diffusion problem with mixed Dirichlet and Neumann boundary conditions:

∇x · [κ(x; θ)∇xw(x)
] = 0 if x1, x2 ∈ (0,1),

w(x) =
{

x1 if x2 = 0,

1 − x1 if x2 = 1,

∇x1w(x) = 0 if x1 ∈ {0,1}.
This PDE serves as a simple model of steady-state flow in aquifers and other subsurface systems;
κ can represent the permeability of a porous medium while w represents the hydraulic head. The
aim is to make inferences on the field κ in a setting where the underlying solution w is observed
with noise on a regular grid of M2 points xi,j , i, j = 1, . . . ,M . The observation model p(y|θ)

takes the form y = {yi,j } where yi,j = w(xi,j ) + εi,j and εi,j are independent normal random
variables with standard deviation σ = 0.1.

Following [43], the field κ was endowed with a prior distribution of the form logκ(x; θ) =∑d
i=1 θiκi(x), where the κi are Fourier basis functions and θi are their associated coefficients.

For the inference, we imposed a uniform prior p(θ) ∝ 1 over the domain [−10,10]d . Our aim
was to obtain accurate estimates for the posterior mean of the parameter θ . The posterior density
p(θ |y) ∝ p(θ)p(y|θ) is available up to an unknown normalising constant p(y). Each evaluation
of the likelihood necessitates the solution of the PDE; control functionals offer the possibility
to reduce the number of likelihood evaluations, and hence the computational cost, required to
achieve a given estimator precision.

As an aside, we note that the standard approach to inference employs a numerical integrator
for the forward-solve, typically based on finite element methods. This would provide us with gra-
dient information on the posterior, but would also introduce some bias due to discretisation error.
To ensure that we obtain exact gradient information, we instead exploited a probabilistic mesh-
less method due to [11] as our numerical integrator. See also [12,13]. Automatic differentiation
was performed using the Autograd package [25].

The key assumptions of our theory were verified. Smoothness of the prior, together with el-
lipticity, imply (A1) holds for all a ∈ N. (A2̄, 5) hold since the prior and likelihood are well-
behaved. (A7) holds since the domain of integration was a hyper-cuboid. Samples from the pos-
terior p(θ |y) were obtained using a Metropolis–adjusted Langevin sampler with fixed proposal
covariance; this ensured that (A8) was satisfied. Remaining assumptions were satisfied by con-
struction of the kernel k: Following the approach outlined in Section 2.4, we took k̃(θ , θ ′) to
be the standard Matérn kernel of order 7

2 , so that b = 2, and then formed k(θ , θ ′) as the prod-
uct of k̃(θ , θ ′) and δ(θ)δ(θ ′), where the boundary function δ satisfies δ(θ) = 1 on θ ∈ [−9,9]d ,
δ(θ) = 0 when θi ∈ {−10,10} for some i, and δ was infinitely differentiable on [−10,10]d . With
this construction, (A3) holds. (A4) holds since k has a root at θi ∈ {−10,10} for each i. The
constant c = 1 was fixed. However the conclusion of Lemma 4 cannot be directly applied here
since H is not c-universal (k vanishes at θi = ±10).
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Figure 3. Experimental results; an experiment to approximate the posterior mean of the parameters
θ ∈ [−10,10]d that govern a permeability field. The figure shows root mean square error (RMSE) for
(i) the standard Monte Carlo estimator based on 2m posterior samples, and (ii) the control functional (CF)
estimator, where m samples are used to train the control functional and the remaining m samples are used
to estimate the expectation. [Results are shown for the first parameter θ1; results for other parameters were
similar. The Matérn kernel of order 7/2 was employed; b = 2 in our notation.]

Observations were generated from the model with data-generating parameter θ = 1 and col-
lected over a coarse grid of M2 = 36 locations. Samples of size n were obtained from the
posterior and divided equally between the training set D0 and test set D1. The performance of
gradient-based control functionals was benchmarked against that of standard Monte Carlo with
all n samples used. We note that, in all experiments, all values of θ encountered were contained
in [−9,9]d . Thus it does not matter that we did not specify δ explicitly above, emphasising the
weakness of assumption (A4) in practical application.

Results are shown in Figure 3. For dimensions d = 1 and 2, the estimator that uses control
functionals achieved a dramatic reduction in asymptotic variance compared to the Monte Carlo
benchmark. On the other hand, for d = 3,4, the curse of dimension is clearly evident for the
control functional method.

4. Conclusion

This paper has established novel asymptotic analysis for a class of estimators based on Stein’s
method. Our analysis makes explicit the contribution of the smoothness a of the distribution �,
the smoothness b of the test function f and the dimension d of the domain of integration. As
such, these results provide a rigorous theoretical explanation for the excellent performance in
low-dimensions observed in previous work.

Several extensions of this work are suggested: (i) Our results focused on compact domains,
since this is the usual setting for results in the scattered data approximation literature. However,
the estimation method does not itself require that the domain of integration be compact. Extend-
ing this analysis to the unbounded-domain setting appears challenging at present and remains a
goal for future research. (ii) Alternative literatures to the scattered data literature could form the
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basis of an analysis of control functionals, such as e.g. recent work by [28]. These efforts have
the advantage of providing L2 error bounds, rather than L∞ error bounds and might facilitate
the extension to unbounded domains. (iii) Generally, our theoretical results clarify the need to
develop estimation strategies that do not suffer from the curse of dimension. While this curse is
intrinsic to functional approximation in general, due to the need to explore the state space, the
observation that many test functions of interest are of low ‘effective dimension’ suggests that
more regularity on the function space could reasonably be assumed. (iv) Recent work in [23]
imposed an additional constraint on the coefficients ai in Section 2.4.2. It would be interesting
to extend our analysis to this context.
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