20 research outputs found
Charge order, dynamics, and magneto-structural transition in multiferroic LuFeO
We investigated the series of temperature and field-driven transitions in
LuFeO by optical and M\"{o}ssbauer spectroscopies, magnetization, and
x-ray scattering in order to understand the interplay between charge,
structure, and magnetism in this multiferroic material. We demonstrate that
charge fluctuation has an onset well below the charge ordering transition,
supporting the "order by fluctuation" mechanism for the development of charge
order superstructure. Bragg splitting and large magneto optical contrast
suggest a low temperature monoclinic distortion that can be driven by both
temperature and magnetic field.Comment: 4 pages, 3 figures, PRL in prin
Absence of Spin Liquid Behavior in Nd3Ga5SiO14 Using Magneto-Optical Spectroscopy
We measured the low-lying crystal field levels of Nd3+ in Nd3Ga5SiO14 via magneto-optical spectroscopy and employed the extracted energies, magnetic moments, and symmetries to analyze the magnetic properties and test the spin liquid candidacy of this material. The exchange interaction is surprisingly small, a discovery that places severe constraints on models used to describe the ground state of this system. Further, it demonstrates the value of local-probe photophysical techniques for rare-earthcontaining materials where bulk property measurements can be skewed by low-lying electronic structure
Optical properties and magnetochromism in multiferroic BiFeO3
In order to investigate spin-charge coupling in multiferroic oxides, we measured the optical properties of BiFeO3. Although the direct 300 K charge gap is observed at 2.67 eV, absorption onset actually occurs at much lower energy with Fe3+ excitations at 1.41 and 1.90 eV. Temperature and magnetic-field-induced spectral changes reveal complex interactions between on-site crystal-field and magnetic excitations in the form of magnon sidebands. We employ the sensitivity of these magnon sidebands to map out the magnetic-fieldtemperature phase diagram which demonstrates optical evidence for spin spiral quenching above 20 T and suggests a spin domain reorientation near 10 T
Electron-Phonon And Magnetoelastic Interactions In Ferromagnetic Co[N(Cn)(2)](2)
We combined Raman and infrared vibrational spectroscopies with complementary lattice dynamics calculations and magnetization measurements to reveal the dynamic aspects of charge-lattice-spin coupling in Co[N(CN)(2)](2). Our work uncovers electron-phonon coupling as a magnetic field-driven avoided crossing of the low-lying Co2+ electronic excitation with two ligand phonons and a magnetoelastic effect that signals a flexible local CoN6 environment. Their simultaneous presence indicates the ease with which energy is transferred over multiple length and time scales in this system
Magnetoelastic Coupling Through The Antiferromagnet-To-Ferromagnet Transition Of Quasi-Two-Dimensional [Cu(Hf2)(Pyz)(2)]Bf4 Using Infrared Spectroscopy
We investigated magnetoelastic coupling through the field-driven transition to the fully polarized magnetic state in quasi-two-dimensional [Cu(HF2)(pyz)(2)]BF4 by magnetoinfrared spectroscopy. This transition modifies out-of-plane ring distortion and bending vibrational modes of the pyrazine ligand. The extent of these distortions increases with the field, systematically tracking the low-temperature magnetization. These distortions weaken the antiferromagnetic spin exchange, a finding that provides important insight into magnetic transitions in other copper halides
Quantum Critical Transition Amplifies Magnetoelastic Coupling In Mn[N(Cn)(2)](2)
We report the discovery of a magnetic quantum critical transition in Mn[N(CN)(2)](2) that drives the system from a canted antiferromagnetic state to the fully polarized state with amplified magnetoelastic coupling as an intrinsic part of the process. The local lattice distortions, revealed through systematic phonon frequency shifts, suggest a combined MnN6 octahedra distortion + counterrotation mechanism that reduces antiferromagnetic interactions and acts to accommodate the field-induced state. These findings deepen our understanding of magnetoelastic coupling near a magnetic quantum critical point and away from the static limit
Absence of Spin Liquid Behavior in Nd3Ga5SiO14 Using Magneto-Optical Spectroscopy
We measured the low-lying crystal field levels of Nd3+ in Nd3Ga5SiO14 via magneto-optical spectroscopy and employed the extracted energies, magnetic moments, and symmetries to analyze the magnetic properties and test the spin liquid candidacy of this material. The exchange interaction is surprisingly small, a discovery that places severe constraints on models used to describe the ground state of this system. Further, it demonstrates the value of local-probe photophysical techniques for rare-earthcontaining materials where bulk property measurements can be skewed by low-lying electronic structure
Optical properties and magnetochromism in multiferroic BiFeO3
In order to investigate spin-charge coupling in multiferroic oxides, we measured the optical properties of BiFeO3. Although the direct 300 K charge gap is observed at 2.67 eV, absorption onset actually occurs at much lower energy with Fe3+ excitations at 1.41 and 1.90 eV. Temperature and magnetic-field-induced spectral changes reveal complex interactions between on-site crystal-field and magnetic excitations in the form of magnon sidebands. We employ the sensitivity of these magnon sidebands to map out the magnetic-fieldtemperature phase diagram which demonstrates optical evidence for spin spiral quenching above 20 T and suggests a spin domain reorientation near 10 T