3,073 research outputs found

    Geometric dependence of Nb-Bi2{_2}Te3{_3}-Nb topological Josephson junction transport parameters

    Get PDF
    Superconductor-topological insulator-superconductor Josephson junctions have been fabricated in order to study the width dependence of the critical current, normal state resistance and flux periodicity of the critical current modulation in an external field. Previous literature reports suggest anomalous scaling in topological junctions due to the presence of Majorana bound states. However, for most realised devices, one would expect that trivial 2Ï€2\pi-periodic Andreev levels dominate transport. We also observe anomalous scaling behaviour of junction parameters, but the scaling can be well explained by mere geometric effects, such as the parallel bulk conductivity shunt and flux focusing

    Experimental realization of SQUIDs with topological insulator junctions

    Get PDF
    We demonstrate topological insulator (Bi2_2Te3_3) dc SQUIDs, based on superconducting Nb leads coupled to nano-fabricated Nb-Bi2_2Te3_3-Nb Josephson junctions. The high reproducibility and controllability of the fabrication process allows the creation of dc SQUIDs with parameters that are in agreement with design values. Clear critical current modulation of both the junctions and the SQUID with applied magnetic fields have been observed. We show that the SQUIDs have a periodicity in the voltage-flux characteristic of Φ0\Phi_0, of relevance to the ongoing pursuit of realizing interferometers for the detection of Majorana fermions in superconductor- topological insulator structures

    Transport and thermoelectric properties of the LaAlO3_3/SrTiO3_3 interface

    Get PDF
    The transport and thermoelectric properties of the interface between SrTiO3_3 and a 26-monolayer thick LaAlO3_3-layer grown at high oxygen-pressure have been investigated at temperatures from 4.2 K to 100 K and in magnetic fields up to 18 T. For T>T> 4.2 K, two different electron-like charge carriers originating from two electron channels which contribute to transport are observed. We probe the contributions of a degenerate and a non-degenerate band to the thermoelectric power and develop a consistent model to describe the temperature dependence of the thermoelectric tensor. Anomalies in the data point to an additional magnetic field dependent scattering.Comment: 7 pages, 4 figure

    Gate-tunable band structure of the LaAlO3_3-SrTiO3_3 interface

    Get PDF
    The 2-dimensional electron system at the interface between LaAlO3_{3} and SrTiO3_{3} has several unique properties that can be tuned by an externally applied gate voltage. In this work, we show that this gate-tunability extends to the effective band structure of the system. We combine a magnetotransport study on top-gated Hall bars with self-consistent Schr\"odinger-Poisson calculations and observe a Lifshitz transition at a density of 2.9×10132.9\times10^{13} cm−2^{-2}. Above the transition, the carrier density of one of the conducting bands decreases with increasing gate voltage. This surprising decrease is accurately reproduced in the calculations if electronic correlations are included. These results provide a clear, intuitive picture of the physics governing the electronic structure at complex oxide interfaces.Comment: 14 pages, 4 figure

    Managing shortleaf pine in Missouri

    Get PDF
    Cover title.Includes bibliographical references (pages 33-35)

    Magnetoresistance from time-reversal symmetry breaking in topological materials

    Get PDF
    Magnetotransport measurements are a popular way of characterizing the electronic structure of topological materials and often the resulting datasets cannot be described by the well-known Drude model due to large, non-parabolic contributions. In this work, we focus on the effects of magnetic fields on topological materials through a Zeeman term included in the model Hamiltonian. To this end, we re-evaluate the simplifications made in the derivations of the Drude model and pinpoint the scattering time and Fermi velocity as Zeeman-term dependent factors in the conductivity tensor. The driving mechanisms here are the aligment of spins along the magnetic field direction, which allows for backscattering, and a significant change to the Fermi velocity by the opening of a hybridization gap. After considering 2D and 3D Dirac states, as well as 2D Rashba surface states and the quasi-2D bulk states of 3D topological insulators, we find that the 2D Dirac states on the surfaces of 3D topological insulators produce magnetoresistance, that is significant enough to be noticable in experiments. As this magnetoresistance effect is strongly dependent on the spin-orbit energy, it can be used as a telltale sign of a Fermi energy located close to the Dirac point

    The Impact of Phorate on the Genetic Diversity of Wetland Aquatic Invertebraes

    Get PDF
    Impacts of the insecticide phorate on the genetic diversity of wetland invertebrates were investigated using field and laboratory studies in 1991. Electrophoretic methods were evaluated for revealing the impact of insecticides. Objectives were to determine the ability of electrophoresis to reveal the impact of phorate on invertebrates and to determine the influence of phorate on the genetic diversity in two common invertebrates. Amphipods, Hyallela azteca and mayflies, Callibaetis ferrugineus (Walsh) were placed in constructed mesocosms in wetlands and were exposed to varying amounts of phorate. Survivors and individuals from the parent population were genetically tested using cellulose acetate electrophoresis techniques. Allele frequencies were calculated for invertebrates in treatments and invertebrates from populations not exposed to phorate. Mortality of test invertebrates was significantly greater in phorate treatments than in controls (F = 5.97, P = 0.019). Chi-square analysis revealed differences in allele frequencies between the untreated populations and individuals of both species treated with phorate cx2 \u3e 8.5; df = 1,2; p \u3c 0.05). In addition, phorate appeared to eliminate, or reduce the frequency of certain genotypes in both species. Results indicate phorate selected against sensitive individuals and electrophoresis was effective at detecting differences between untreated populations and invertebrates that survived treatments. Genetic techniques should enable wetland scientists to detect the effects of pollution on invertebrate populations by monitoring genetic composition

    Correlated enhancement of Hc2 and Jc in carbon nanotube-doped MgB2

    Full text link
    The use of MgB2 in superconducting applications still awaits for the development of a MgB2-based material where both current-carrying performance and critical magnetic field are optimized simultaneously. We achieved this by doping MgB2 with double-wall carbon nanotubes (DWCNT) as a source of carbon in polycrystalline samples. The optimum nominal DWCNT content for increasing the critical current density, Jc is in the range 2.5-10%at depending on field and temperature. Record values of the upper critical field, Hc2(4K) = 41.9 T (with extrapolated Hc2(0) ~ 44.4 T) are reached in a bulk sample with 10%at DWCNT content. The measured Hc2 vs T in all samples are successfully described using a theoretical model for a two-gap superconductor in the dirty limit first proposed by Gurevich et al.Comment: 12 pages, 3 figure
    • …
    corecore