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Abstract

Magnetotransport measurements are a popular way of characterizing the electronic structure of
topological materials and often the resulting datasets cannot be described by the well-known Drude
model due to large, non-parabolic contributions. In this work, we focus on the effects of magnetic
fields on topological materials through a Zeeman term included in the model Hamiltonian. To this
end, we re-evaluate the simplifications made in the derivations of the Drude model and pinpoint the
scattering time and Fermi velocity as Zeeman-term dependent factors in the conductivity tensor. The
driving mechanisms here are the aligment of spins along the magnetic field direction, which allows for
backscattering, and a significant change to the Fermi velocity by the opening of a hybridization gap.
After considering 2D and 3D Dirac states, as well as 2D Rashba surface states and the quasi-2D bulk
states of 3D topological insulators, we find that the 2D Dirac states on the surfaces of 3D topological
insulators produce magnetoresistance, that is significant enough to be noticable in experiments. As
this magnetoresistance effect is strongly dependent on the spin-orbit energy, it can be used as a telltale
sign of a Fermi energy located close to the Dirac point.

1. Introduction

It is well known that magnetoresistance effects can often be described in terms of Shubnikov-de Haas quantum
oscillations and Drude multiband magnetoresistance and that this can be used to gather detailed information
about the electronic structure of a material. However, these effects do not always fully describe the physics at
hand and magnetoresistance may arise through other mechanisms. For instance, there are many reports of large
magnetoresistance in Bi-based and Heusler topological insulators (TIs) [1-7], which are difficult to explain
using the simplified Drude model and require one to look into different sources of large magnetoresistance. In
1969, Abrikosov derived the occurence of large, linear magnetoresistance for cases where only the lowest Landau
level is filled 8, 9]. To observe this effect, the system needs to be in the quantum limit: Eg, kzT < 0E;;, where
OE; is the energy difference between two successive Landau levels and Erand kT represent the Fermi and
thermal energies, respectively. This can usually only be fulfilled at extremely low carrier densities and high
electron mobilities, as is the case for Bi [10] and n-type doped InSb [11]. Because of the lower mobilities in
Bi-based topological insulators, quantum linear magnetoresistance seems unlikely to occur in these systems
and the large magnetoresistance has to originate from another mechanism. On the other hand, in very
disordered systems, classical magnetoresistance has been predicted [12, 13]. In this work, we will focus on the
intermediate regime and discuss the magnetoresistance that is already embedded inside the Zeeman term in
model Hamiltonians that describe Bi-based topological materials with relatively low mobilities.

2. Helical magnetoresistance

The approximations within the Drude model do not only make life easier, they also neglect effects that may be
very useful for characterizing the electronic structure. For example, the charge carrier mobility = erm ™" (with
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7 the scattering time and 1 the effective mass) does not have to be constant with field and

m
ne’r(B)’

P (B) = ()]
where 7 is the charge carrier density, can aquire a magnetic field dependence through the scattering rate

I'(B) = 7 '(B). In the following, we will investigate how the magnetic field dependence of the scattering time
influences the magnetoresistance of TIs and related systems with strong spin—orbit coupling.

2.1. Surface Dirac cones

The magnetic field couples to an electronic system through two main mechanisms: the Zeeman effect and the
‘orbital’ or ‘Doppler’ effect p’ = p + eA, where p is the electron momentum and A the vector potential. Here,
we focus on topological insulators with low mobilities such that w.7 < 1 (w represents the cyclotron frequency
and 7 the scattering time) and the influence of the orbital effect is small, as is the case for typical T thin films.
Ignoring the orbital effect of a magnetic field, topological surface states of Bi-based 3D topological insulators
can be modeled using the 2D Hamiltonian by Liu et al [ 14]:

Hrgs = /vp(o x k) + gzﬂ 0. B;, 2

where p15is the Bohr magneton, gis the effective magnetic moment and o is the vector containing the 3 Pauli
matrices to represent the spin degree of freedom. Note that the spin-orbit interaction part of the Hamiltonian
is essentially the Rashba Hamiltonian Hgsoc = %(U X p) - e, with avindicating the spin—orbit coupling
strength. Due to this spin-orbit interaction, the degenerate energy bands have opposite helicities, which are
denoted by the £ indices in the following. The Zeeman effect, arising from a magnetic field in the z-direction, is
captured by a Hamiltonian of the simple form H; = (gu3/2) o - B, which describes the alignment of the spins
in the magnetic field direction.

Writing |k| = k, the dispersion relation of the conduction band side of the system is given by

Ec = \/#2ik? + (guyB./2)? 3)

with the corresponding spinors

1 [ie ™ JEc + guyB./2

- 4)
2Ec\ +.Ec — gugB./2

Yo+ =

for the top and bottom surfaces of the TI. Within a simple Boltzmann picture, the scattering rate I3 = 75" is
proportional to the number of available states to scatter to. Assuming dominant elastic scattering, the scattering
rate is given by an integral over the Fermi surface: 75" oc f S(1 — cos 0)d6, where the scattering factor Sis

P

determined using Fermi’s golden rule, S+ = |(3/,|14) |%, for scattering from |¢) at zero angle to |1/’) at angle 6.

For scattering within a single Dirac cone we find
B %(1 + cos 0) i*vik? + (gupB./2)?
7*viEk? + (gugB./2)?

This expression reduces to %(1 + cos 0) for B — 0, which describes the well known suppressed backscattering

)

S+:S,

in TIs [15], induced by the helical spin ordering. Through (¢¢ +|0;|tc +), we find the out-of-plane component
ofthespintobe S, = %(EZ /Ec), wherewe used E, = g upB,/2. For nonzero magnetic field, the helical order is
broken as all spins are tilted along the magnetic field direction, creating a finite overlap between states in every
momentum-space direction, which allows backscattering. A compact expression for the dependence of the
scattering rate (and therefore for the resistance R(B)) on the magnetic field is found by multiplying the scattering
factor Sy with the Boltzmann factor (1 — cos #) and integrating the result over all angles §. We find for the
magnetoresistance (MR):
RB) — RO o095 x 2
R(0) 1+ x?

where x is given by x(B) = Ez(B)/Eso and can be seen as a competition between the Zeeman energy E; = g
1pB/2 and the spin-orbit energy at the Fermi level Eso = /vrkg. The difference between the zero field limit and
the large field limit results in a magnetoresistance of 300%. This factor 4 difference in transport scattering time
between the cases of spin-momentum locked spins and fully aligned spins, was first pointed out by Wu et al [16].

Figure 1 illustrates the effect of the Zeeman energy on the band structure and magnetoresistance. Figure 1(a)
shows the evolution of the Fermi level with increasing Zeeman energy. Because we assume the carrier density
mp = ki /(27) to be constant, the spin-orbit energy Eso = /vy kg remains unaffected by the magnetic field.
Note that the opening of a gap with magnetic field is not an additional effect, but a visualization of the

MRyeiicat = 100% X

(6)
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Figure 1. Helical magnetoresistance. (a) 3D TI surface Dirac cones (black lines) in the absence (left panel) and presence (right panel)
of a magnetic field perpendicular to the 2-dimensional electron gas (2DEG). Horizontal lines of the same color indicate how the Fermi
energy changes with magnetic field, keeping the carrier density 1, = k7 /(2) constant. (b) Helical magnetoresistance as a function
of Zeeman energy for different initial Fermi energies, i.e. different spin-orbit energies, where purple (red) corresponds to small (large)
Eso.

hybridization term that causes the enhanced scattering probability. In figure 1(b) the Zeeman energy and
thereby the ratio x(B) = Ez(B)/Eso is varied for different spin-orbit energies. From this figure, we see that
especially for Fermi levels close to the Dirac point, the magnetoresistance through broken spin helicity quickly
reaches its saturation value of 300%.

For a realistic g-factor of 25 [ 14] and a magnetic field of 10 T, we can substitute E&, = E; — Ef (with Epthe
Fermi energy) into equation (6) and find that to reach a 100% helical MR, the Fermi level needs to be within
~10 meV with respect to the Dirac point. While this effect is strong enough to survive thermal broadening at
liquid Helium temperatures, inhomogeneities in the electronic structure of the Bi-based TIs may smear out the
effect over alarger energy range.

2.2.Rashba-type surface states

In the previous section we have seen that in non-degenerate, surface Dirac cones, described by a Hamiltonian
that is dominated by Rashba-type spin—orbit coupling, large MR up to ~300% can arise. In this section, we study
the response of Rashba-type surface states to a magnetic field. Apart from a large parabolic contribution to the
band structure, the system is described by spin—orbit coupling that causes spin-momentum locking in a similar
fashion as in the 2D TI surface Dirac cone. So to model Rashba surface states, we use a similar model
Hamiltonian as in the previous section, but here the Rashba and magnetic field parts act as corrections to a
dominant parabolic term:

212

7%k
Hpgs = =+ wp(o x k) + Shs 0, B,. (7)
m 2
Here, the resulting dispersion relations
7%k?
Eoa=" o+ JAERE + (guB./2)? (8)
m

both correspond to conduction band states on the same surface, but with opposite helicities. The spinors of these
two conduction bands are:

ie" [Eci + gugB./2
S S— AT ©

v 1
C,+ = .
\/ZEC,:!: _ % +JEc+ — guyB./2

which is very similar to the Dirac cone spinors of equation (4). The apparently small, but very important
difference, is the use of different energy disperions E  for the two spinors. In this case, the out-of-plane
component of the spin S, = %Z E,/[Ec+ — /%k*/(2m)], which tells us that in high magnetic fields, the spins
of the two helicities align in opposite directions along the k_-axis.

For the Rashba 2DEG, the total amount of available states to scatter to, doubles with respect to the single
Dirac cone and the scattering factor becomes S.. = | (1. |14) > + ()" |1)+) |*. Because of interband scattering,
we find for zero field: S, = %(1 + cosf) + %(1 — cos ) = 1.Inthehigh field limit, intraband scattering

becomes possible at all angles # and | (', [1+) > — 1. However, because of the opposite magnetic field response
of the two helicities in the Rashba system, interband scattering becomes strongly suppressed in the high field

3
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limit ( (" |1+) > — 0),s0that S. — 1, which is the exact same result as for zero field. We conclude that in
contrast to the single Dirac-type surface state, the set of two Rashba-type surface states results in zero net helical
magnetoresistance.

3. Magnetoresistance through a change in fermi velocity

Upon following textbook derivations of the Drude resistance from the Boltzmann transport equation, but now
for a single, spin non-degenerate band and without assuming a parabolic dispersion relation, one arrives at

p. = 4T fl/kp / VE
kR et
While the substitutions 47 /k# — n,p and /ikg /vg — 1/m* recover the Drude model for parabolic bands,
equation (10) indicates k; ' and v; ' dependencies of the magnetoresistance. In this section we consider the effect

of the opening of a Zeeman gap (as in figure 1(a)) on the Fermi velocity and the resulting magnetoresistance,
while we assume the carrier density—and therefore kr - to be constant.

. (10)

3.1. Surface Dirac cones
Considering the model Hamiltonian for 2D Dirac surface states, equation (2), the Fermi velocity changes with
magnetic field as

vrEso
VES + EZ
sothat p o< /ESy + E7 /Eso- Then we find an additional magnetoresistance originating from a change in
Fermi velocity as the bands aquire a Zeeman-shift:
MR,, = 100% x (/1 + x> — 1), (12)

where we still use x(B) = Ez(B)/Eso. We see that the decrease of Fermi velocity with increasing magnetic field
causes a non-saturating magnetoresistance, which becomes linear in B in the high-field limit E;(B) > Eso.
Including the magnetic field dependencies of both the scattering time and Fermi velocity, we obtain an
expression for the Zeeman-induced magnetoresistance in 2D Dirac surface states:

2
MRy, tetical = 100% x [(1 4 X 2)\/1 T 1]. (13)

10
ve(B) = anﬂvékz + (guyB. /2 = (11

14+ x

Through this model, as x &« B — 00, enormous magnetoresistance values can be reached for low carrier
densities (i.e. Fermi energies close to the Dirac point) as in this regime the resulting magnetoresistance becomes
linear. Comparing our findings with experimental results, we note that linear magnetoresistance is very common
in measurements on topological surface states [ 1-7]. However, distinguishing the described effect from classical
magnetoresistance arising from strong inhomogeneity [12, 13] may be difficult.

3.2. Rashba-type surface states

For the Rashba-type surface states described by equation (7), the Fermi velocity dependence on the magnetic field
should be significantly less dramatic as in this case the dispersion relation is dominated by the parabolic term.
Following the same procedure as above (and assuming a fixed krfor simplicity), we find the magnetoresistance as a
consequence of the Fermi velocity change in a single, spin non-degenerate band to be:

VI+x2 -1
1+ 25 12

Eso

MR,, = 100% x (14)

where E, = /2%k? /(2m™*) is the parabolic contribution to the dispersion. It is instructive to consider this resultin a
few limits. In the high field limit E; >> Ego (x >> 1), we can further explore the limits E, > Espand E, < Ego:
-1
MR,, = 100% x ———— (15)
1+ —x

Eso

. E
Saturationat + —2 for E, > Eso
= 2E, . (16)

LinearMR for E, < Eso
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Figure 2. Rashba 2DEG model in a perpendicular magnetic field. (a) The Rashba 2DEG dispersion without magnetic field.

(b) Dispersion in a 30T magnetic field. (c) Evolution of the wave number k with applied magnetic field. (d) Evolution of the Fermi
velocity with magnetic field. (e) Intra- and interband wavefunction overlap of ¢(§ = 0) with other states on the Fermi surface, for

B = 0T and B = 30T. The radius indicates the wavefunction overlap and the forward directed state marks an overlap of 1. (f)
Magnetoresistance (black line) and Hall resistivity (red line) arising from the response of the Fermi wave vectors, Fermi velocities and
scattering times to a perpendicular, external magnetic field.

Note that in the limit E,, >> Ego, the MR contributions from the two individual E¢ ;. bands are opposite.
Without correctly summing the conductivity, this already hints at cancelling contributions that result in zero net
effect.

Because of the complexity that arises when the conductivity contributions from both bands are summed and
matrix-inverted to resistivity, we resort to numerical methods from here on. In the numerical model we use the
following parameters: Er = 75 meV, /g = 0.17 eV A, h?/(2m) = 45eV A? andg = 12, which do not
represent a specific material, but are comparable to the Rashba-like states in Bi-based TIs [14]. In figure 2, we
present several results from the model. Figures 2(a) and (b) illustrate the band structures without and with
magnetic field respectively. Most apparent from these figures is the splitting of the two bands due to the magnetic
field, which changes the carrier densities for the different helicities. The latter is also clear from figure 2(c), where
we see that the total carrier density is conserved. From figure 2(d), we see that the simplification from earlier, that
kg = constant, caused us to miss a change in total Fermi velocity with magnetic field for this Rashba system. This
small increase of v, unaffected by the constant scattering time (see panel 2(e)), results in a small, negative
magnetoresistance MR ~ —3% as shown in figure 2(f). From this, we can conclude that in 2D Rashba surface
states, no noteworthy magnetoresistance arises through the magnetic field dependent scattering time, Fermi
velocity or even a combination of the two.

4. Magnetotransport through the bulk of a 3D topological insulator

In the Bi-based TI family, there are only few examples of alloys that are true bulk insulators and the majority
exhibits a bulk shunt [17, 18]. To describe the bulk states, we once more utilize the work horse bulk Hamiltonian
from Liu et al [14]. Up to O(k?), rotated around the y-axis in orbital space (0, <> 0,) and around the z-axis in
spinspace (0 — 0 + m)itreads:

Hii, = E 0950 + My 0yso + v o, (syky — scky) + 7wk, 0,50 + (guB/Z)BZ 00S2» (17)

where E{ and M are polynomials in kj and k.. In principle, equation (17) describes two Rashba systems of
opposite sign, coupled by My and 7v k.. As in these materials the dispersion in the z-direction is allmost
negligible, v,is much smaller than v [14]. M however, is not necessarily small and we continue with the 4 x 4
Hamiltonian, where we neglect /v,k, and the parabolic E{ term for simplicity. Taking Eso = /#pkpandE; = g
1pB/2, we find for the conduction band two dispersions,
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Figure 3. Mass-term dependence of the scattering rate. The black line represents the magnetic field dependence of the scattering rate
for M — 0 and shows the recovery of the factor 4 from the surface Dirac cone. The normalized scattering rate corresponds to the
normalized wavefunction overlap. The solid(dashed) red line indicates the scattering rate of the 4+-(—) helicity for nonzero mass term
M. The mass term acts as an offset to the Zeeman term, but in opposite directions for the different helicities.

Eci = Bl + My = E)?, (18)
with the spinors
Eso
1 | (Ecs F Mg — Ep)ie”

T +E50 |

F(Ec,s F My — Ez) ie”

Yo = (19)

where Ag = 4E¢ +(Ec+ F My — Ez)is the normalization factor. These two spinors are orthogonal for every
angle in momentum-space, so that interband scattering is forbidden in the bulk conduction band. Using
S+ = | {3/ [¢) |, we find for the helical magnetoresistance

100% x 3 E¢yEz(E; + 2M)
(Eso + 4M?)(Eo + (B + M)?)’

MRH,gE X (20)

where M = M, is the momentum-independent partof My = My + M; kH2 + M, k? and represents the gap size.
The =+ sign indicates that the mass term acts as an offset to the magnetic field term. In figure 3, it is shown that
the offset due to finite M significantly reduces the effect of magnetic fields that are small with respect to M (as is
the case for Bi-based TTs). Moreover, the opposite response of the two helicities to the magnetic field causes the
MR from the separate bands to cancel. So while interband scattering is forbidden in the TI bulk (which
suppressed helical MR in Rashba surface states), it is the gap M that makes the helical MR effect small.

Similar to the 2D Rashba system, the Zeeman-shift works in opposite ways for the Fermi velocities of the two
helicities,

aEso
Ed+ (M £ Ez)*

ve(B) = li\/ﬁzvékz + (gugB./2)* (21)
/2 Ok
As a consequence, also the correction to the Fermi velocity by the Zeeman-shift does not cause any
magnetoresistance in the bulk of topological insulators, similar to the case for 2D Rashba states.
In the limit M — 0, equation (17) describes an accidental DSM, with two linear, orthogonal Dirac cones.
Because of the 3D character, we should also take the k,-dependence into account and use

Hfi),fM = /) 0, (syks — sxky) + 7k, 0,50 + (g1 /2) B, 0ps.. (22)

In spherical coordinates and in terms of Eso| = /v k|, Eso1 = /v,k, and E; = g ugB,/2, the dispersion of the
conduction band

Ec. = \/Eéou sin p? + (Eso, cos @ + Ez)> (23)
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and the spinor parts of the wavefunctions become

e sin ¢ Eso|
1 |i(Ez £ cosy Eso1 — Ec+)
JAi ei() sin<p Eso”

+E; 4+ cosp Eso1 F Ec,+

/(/}C,i = > (24)

with the normalization factor A = 2sin > ESZOH + 2 (+£Ez + cos ¢ Eso1 F Ec+)?. Aswas the case for the

bulk 3D TI spinors of the last section, the two spinors for the conduction band side of HESM are completely

orthogonal. Note that for ¢ = /2, we recover a two-fold degenerate version of the 2D surface Dirac cone system
used in the above, which indicates that large, helical magnetoresistance may be present in this system. However, the
3D character of the DSM allows the magnetic field term to be just absorbed into k; = k, + gz B/ (/) and the
Dirac system simply splits into two, ungapped Weyl cones. Not only does the absence of a gap discard the effect of
the Zeeman-shift on the Fermi velocity, it also means that the branches are not hybridized and that even in high
magnetic fields, direct backscattering is still not possible within this linearized model. Therefore, 3D Dirac
semimetals should be free of both helical and Zeeman-shift induced magnetoresistance.

5. Conclusions

In this work, we studied how magnetotransport in topological materials can originate directly from a generic TI
Hamiltonian with a Zeeman term. We found that the experimentally observed large magnetoresistance in Bi-
based 3D topological insulators [ 1, 3—7] can partially be explained by detailed effects incorporated in the model
Hamiltonians. While we found no significant contributions to the magnetoresistance by topological bulk or
surface Rashba states (apart from possibly causing multiband magnetoresistance), surface Dirac cones can cause
large, non-saturating, linear magnetoresistance through both the scattering time via broken time reversal
symmetry and a correction to the Fermi velocity by means of a Zeeman-shift. As these effects are the largest when
the Zeeman energy is of the same order as the spin-orbit energy, a large, non-saturating magnetoresistance may
be a telltale sign of a Fermi level very close to the Dirac point.
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