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Abstract
Magnetotransportmeasurements are a popular way of characterizing the electronic structure of
topologicalmaterials and often the resulting datasets cannot be described by thewell-knownDrude
model due to large, non-parabolic contributions. In this work, we focus on the effects ofmagnetic
fields on topologicalmaterials through a Zeeman term included in themodelHamiltonian. To this
end, we re-evaluate the simplificationsmade in the derivations of theDrudemodel and pinpoint the
scattering time and Fermi velocity as Zeeman-termdependent factors in the conductivity tensor. The
drivingmechanisms here are the aligment of spins along themagnetic field direction, which allows for
backscattering, and a significant change to the Fermi velocity by the opening of a hybridization gap.
After considering 2D and 3DDirac states, as well as 2DRashba surface states and the quasi-2Dbulk
states of 3D topological insulators, wefind that the 2DDirac states on the surfaces of 3D topological
insulators producemagnetoresistance, that is significant enough to be noticable in experiments. As
thismagnetoresistance effect is strongly dependent on the spin-orbit energy, it can be used as a telltale
sign of a Fermi energy located close to theDirac point.

1. Introduction

It is well known thatmagnetoresistance effects can often be described in terms of Shubnikov-deHaas quantum
oscillations andDrudemultibandmagnetoresistance and that this can be used to gather detailed information
about the electronic structure of amaterial. However, these effects do not always fully describe the physics at
hand andmagnetoresistancemay arise through othermechanisms. For instance, there aremany reports of large
magnetoresistance in Bi-based andHeusler topological insulators (TIs) [1–7], which are difficult to explain
using the simplifiedDrudemodel and require one to look into different sources of largemagnetoresistance. In
1969, Abrikosov derived the occurence of large, linearmagnetoresistance for cases where only the lowest Landau
level isfilled [8, 9]. To observe this effect, the systemneeds to be in the quantum limit:EF, kBT=δELL, where
δELL is the energy difference between two successive Landau levels and EF and kBT represent the Fermi and
thermal energies, respectively. This can usually only be fulfilled at extremely low carrier densities and high
electronmobilities, as is the case for Bi [10] and n-type doped InSb [11]. Because of the lowermobilities in
Bi-based topological insulators, quantum linearmagnetoresistance seems unlikely to occur in these systems
and the largemagnetoresistance has to originate from anothermechanism.On the other hand, in very
disordered systems, classicalmagnetoresistance has been predicted [12, 13]. In this work, wewill focus on the
intermediate regime and discuss themagnetoresistance that is already embedded inside the Zeeman term in
modelHamiltonians that describe Bi-based topologicalmaterials with relatively lowmobilities.

2.Helicalmagnetoresistance

The approximationswithin theDrudemodel do not onlymake life easier, they also neglect effects thatmay be
very useful for characterizing the electronic structure. For example, the charge carriermobilityμ=eτm−1 (with
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τ the scattering time andm the effectivemass) does not have to be constant withfield and
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where n is the charge carrier density, can aquire amagnetic field dependence through the scattering rate
Γ(B)=τ−1(B). In the following, wewill investigate how themagnetic field dependence of the scattering time
influences themagnetoresistance of TIs and related systemswith strong spin–orbit coupling.

2.1. SurfaceDirac cones
Themagnetic field couples to an electronic system through twomainmechanisms: the Zeeman effect and the
‘orbital’ or ‘Doppler’ effect p p Ae¢ = + , where p is the electronmomentum and A the vector potential. Here,
we focus on topological insulators with lowmobilities such thatωcτ=1 (ωc represents the cyclotron frequency
and τ the scattering time) and the influence of the orbital effect is small, as is the case for typical TI thinfilms.
Ignoring the orbital effect of amagneticfield, topological surface states of Bi-based 3D topological insulators
can bemodeled using the 2DHamiltonian by Liu et al [14]:

kH v
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whereμB is the Bohrmagneton, g is the effectivemagneticmoment and s is the vector containing the 3 Pauli
matrices to represent the spin degree of freedom.Note that the spin-orbit interaction part of theHamiltonian
is essentially the RashbaHamiltonian H p eRSOC z

s= ´a ( ) · , withα indicating the spin–orbit coupling
strength. Due to this spin-orbit interaction, the degenerate energy bands have opposite helicities, which are
denoted by the±indices in the following. The Zeeman effect, arising from amagnetic field in the z-direction, is
captured by aHamiltonian of the simple form BH g 2Z B sm= ( ) · , which describes the alignment of the spins
in themagnetic field direction.

Writing k k=∣ ∣ , the dispersion relation of the conduction band side of the system is given by

E v k g B 2 3C F B z
2 2 2 2 m= + ( ) ( )

with the corresponding spinors

E

ie E g B

E g B

1

2

2

2
4C

C

i
C B z

C B z
,y

m

m
=

+

 -

q



-⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )

for the top and bottom surfaces of the TI.Within a simple Boltzmann picture, the scattering rate B B
1tG = - is

proportional to the number of available states to scatter to. Assuming dominant elastic scattering, the scattering
rate is given by an integral over the Fermi surface: S d1 cosB

1 òt q qµ -- ( ) , where the scattering factor S is

determined using Fermi’s golden rule, S 2y y= á ¢ ñ  ∣ ∣ ∣ , for scattering from yñ∣ at zero angle to y¢ñ∣ at angle θ.
For scatteringwithin a single Dirac conewefind
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This expression reduces to 1 cos1

2
q+( ) for B 0 , which describes thewell known suppressed backscattering

in TIs [15], induced by the helical spin ordering. Through C z C, ,y s yá ñ ∣ ∣ , we find the out-of-plane component

of the spin to be S E Ez z C2

= ( ), wherewe usedEz=gμBBz/2. For nonzeromagnetic field, the helical order is
broken as all spins are tilted along themagnetic field direction, creating afinite overlap between states in every
momentum-space direction, which allows backscattering. A compact expression for the dependence of the
scattering rate (and therefore for the resistanceR(B)) on themagnetic field is found bymultiplying the scattering
factor S±with the Boltzmann factor 1 cos q-( ) and integrating the result over all angles θ.Wefind for the
magnetoresistance (MR):
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where x is given by x(B)=EZ(B)/ESO and can be seen as a competition between the Zeeman energyEZ=g
μBB/2 and the spin-orbit energy at the Fermi level E v kF FSO = . The difference between the zerofield limit and
the largefield limit results in amagnetoresistance of 300%. This factor 4 difference in transport scattering time
between the cases of spin-momentum locked spins and fully aligned spins, was first pointed out byWu et al [16].

Figure 1 illustrates the effect of the Zeeman energy on the band structure andmagnetoresistance. Figure 1(a)
shows the evolution of the Fermi level with increasing Zeeman energy. Becausewe assume the carrier density
n k 2D F2

2 p= ( ) to be constant, the spin-orbit energy E v kF FSO = remains unaffected by themagnetic field.
Note that the opening of a gapwithmagnetic field is not an additional effect, but a visualization of the
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hybridization term that causes the enhanced scattering probability. Infigure 1(b) the Zeeman energy and
thereby the ratio x(B)=EZ(B)/ESO is varied for different spin-orbit energies. From this figure, we see that
especially for Fermi levels close to theDirac point, themagnetoresistance through broken spin helicity quickly
reaches its saturation value of 300%.

For a realistic g-factor of 25 [14] and amagnetic field of 10T,we can substitute E E EFSO
2

Z
2 2= - (withEF the

Fermi energy) into equation (6) andfind that to reach a 100%helicalMR, the Fermi level needs to bewithin
∼10meVwith respect to theDirac point.While this effect is strong enough to survive thermal broadening at
liquidHelium temperatures, inhomogeneities in the electronic structure of the Bi-based TIsmay smear out the
effect over a larger energy range.

2.2. Rashba-type surface states
In the previous sectionwe have seen that in non-degenerate, surfaceDirac cones, described by aHamiltonian
that is dominated by Rashba-type spin–orbit coupling, largeMRup to∼300%can arise. In this section, we study
the response of Rashba-type surface states to amagnetic field. Apart from a large parabolic contribution to the
band structure, the system is described by spin–orbit coupling that causes spin-momentum locking in a similar
fashion as in the 2DTI surfaceDirac cone. So tomodel Rashba surface states, we use a similarmodel
Hamiltonian as in the previous section, but here the Rashba andmagnetic field parts act as corrections to a
dominant parabolic term:
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Here, the resulting dispersion relations
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both correspond to conduction band states on the same surface, but with opposite helicities. The spinors of these
two conduction bands are:
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which is very similar to theDirac cone spinors of equation (4). The apparently small, but very important
difference, is the use of different energy disperions EC,± for the two spinors. In this case, the out-of-plane
component of the spin S E E k m2z z C2 ,

2 2= -[ ( )], which tells us that in highmagnetic fields, the spins
of the twohelicities align in opposite directions along the kz-axis.

For the Rashba 2DEG, the total amount of available states to scatter to, doubles with respect to the single
Dirac cone and the scattering factor becomes S 2 2y y y y= á ¢ ñ + á ¢ ñ +  - ∣ ∣ ∣ ∣ ∣ ∣ . Because of interband scattering,
wefind for zero field: S 1 cos 1 cos 11

2

1

2
q q= + + - = ( ) ( ) . In the high field limit, intraband scattering

becomes possible at all angles θ and 12y yá ¢ ñ + ∣ ∣ ∣ . However, because of the oppositemagnetic field response
of the twohelicities in the Rashba system, interband scattering becomes strongly suppressed in the highfield

Figure 1.Helicalmagnetoresistance. (a) 3DTI surfaceDirac cones (black lines) in the absence (left panel) and presence (right panel)
of amagnetic field perpendicular to the 2-dimensional electron gas (2DEG). Horizontal lines of the same color indicate how the Fermi
energy changeswithmagneticfield, keeping the carrier density n k 2D F2

2 p= ( ) constant. (b)Helicalmagnetoresistance as a function
of Zeeman energy for different initial Fermi energies, i.e. different spin-orbit energies, where purple (red) corresponds to small (large)
ESO.
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limit ( 02y yá ¢ ñ - ∣ ∣ ∣ ), so that S 1 , which is the exact same result as for zero field.We conclude that in
contrast to the singleDirac-type surface state, the set of twoRashba-type surface states results in zero net helical
magnetoresistance.

3.Magnetoresistance through a change in fermi velocity

Upon following textbook derivations of theDrude resistance from the Boltzmann transport equation, but now
for a single, spin non-degenerate band andwithout assuming a parabolic dispersion relation, one arrives at
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While the substitutions k n4 F D
2

2p  and k v m1F F *  recover theDrudemodel for parabolic bands,
equation (10) indicates kF

1- and vF
1- dependencies of themagnetoresistance. In this sectionwe consider the effect

of the opening of a Zeeman gap (as in figure 1(a)) on the Fermi velocity and the resultingmagnetoresistance,
while we assume the carrier density—and therefore kF - to be constant.

3.1. SurfaceDirac cones
Considering themodelHamiltonian for 2DDirac surface states, equation (2), the Fermi velocity changes with
magnetic field as
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k

v k g B
v E

E E

1
2 , 11F F B z

F2 2 2 2 SO

SO
2

Z
2

 m=
¶
¶

+ =
+

( ) ( ) ( )

so that E E Exx SO
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SOr µ + . Thenwefind an additionalmagnetoresistance originating from a change in
Fermi velocity as the bands aquire a Zeeman-shift:
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wherewe still use x(B)=EZ(B)/ESO.We see that the decrease of Fermi velocity with increasingmagnetic field
causes a non-saturatingmagnetoresistance, which becomes linear inB in the high-field limit EZ(B)?ESO.
Including themagnetic field dependencies of both the scattering time and Fermi velocity, we obtain an
expression for the Zeeman-inducedmagnetoresistance in 2DDirac surface states:
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Through thismodel, as x Bµ  ¥, enormousmagnetoresistance values can be reached for low carrier
densities (i.e. Fermi energies close to theDirac point) as in this regime the resultingmagnetoresistance becomes
linear. Comparing ourfindingswith experimental results, we note that linearmagnetoresistance is very common
inmeasurements on topological surface states [1–7]. However, distinguishing the described effect from classical
magnetoresistance arising from strong inhomogeneity [12, 13]may be difficult.

3.2. Rashba-type surface states
For theRashba-type surface states described by equation (7), the Fermi velocity dependence on themagneticfield
shouldbe significantly less dramatic as in this case the dispersion relation is dominated by the parabolic term.
Following the sameprocedure as above (and assuming afixed kF for simplicity), wefind themagnetoresistance as a
consequence of the Fermi velocity change in a single, spin non-degenerate band to be:
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where E k m2p
2 2 *= ( ) is theparabolic contribution to thedispersion. It is instructive to consider this result in a

few limits. In thehighfield limitEZ?ESO (x?1), we can further explore the limitsEp?ESO andEp=ESO:
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Note that in the limit Ep?ESO, theMR contributions from the two individual EC,± bands are opposite.
Without correctly summing the conductivity, this already hints at cancelling contributions that result in zero net
effect.

Because of the complexity that arises when the conductivity contributions fromboth bands are summed and
matrix-inverted to resistivity, we resort to numericalmethods fromhere on. In the numericalmodel we use the
following parameters: EF=75meV, v 0.17F = eVÅ,ÿ2/(2m)=45 eVÅ2 and g=12, which do not
represent a specificmaterial, but are comparable to the Rashba-like states in Bi-based TIs [14]. Infigure 2, we
present several results from themodel. Figures 2(a) and (b) illustrate the band structures without andwith
magnetic field respectively.Most apparent from these figures is the splitting of the two bands due to themagnetic
field, which changes the carrier densities for the different helicities. The latter is also clear from figure 2(c), where
we see that the total carrier density is conserved. Fromfigure 2(d), we see that the simplification from earlier, that
kF≈constant, caused us tomiss a change in total Fermi velocity withmagnetic field for this Rashba system. This
small increase of vF, unaffected by the constant scattering time (see panel 2(e)), results in a small, negative
magnetoresistanceMR≈−3%as shown infigure 2(f). From this, we can conclude that in 2DRashba surface
states, no noteworthymagnetoresistance arises through themagnetic field dependent scattering time, Fermi
velocity or even a combination of the two.

4.Magnetotransport through the bulk of a 3D topological insulator

In the Bi-based TI family, there are only few examples of alloys that are true bulk insulators and themajority
exhibits a bulk shunt [17, 18]. To describe the bulk states, we oncemore utilize thework horse bulkHamiltonian
fromLiu et al [14]. Up toO(k2), rotated around the y-axis in orbital space ( x zs s« ) and around the z-axis in
spin space (q q p + ) it reads:

H E s M s v s k s k v k s g B s2 , 17k k x z y x x y z z y B z zLiu
0

0 0 0 0 0 s s s s m s= + + - + + ( ) ( ) ( )

where Ek
0 and Mk are polynomials in kP and kz. In principle, equation (17)describes twoRashba systems of

opposite sign, coupled by Mk and ÿvzkz. As in thesematerials the dispersion in the z-direction is allmost
negligible, vz ismuch smaller than vP [14]. Mk however, is not necessarily small andwe continuewith the 4×4
Hamiltonian, wherewe neglect ÿvzkz and the parabolic Ek

0 term for simplicity. Taking E v kF FSO = andEZ=g
μBB/2, wefind for the conduction band two dispersions,

Figure 2. Rashba 2DEGmodel in a perpendicularmagneticfield. (a)TheRashba 2DEGdispersionwithoutmagneticfield.
(b)Dispersion in a 30Tmagneticfield. (c)Evolution of the wave number kwith appliedmagneticfield. (d)Evolution of the Fermi
velocity withmagnetic field. (e) Intra- and interbandwavefunction overlap ofψ(θ=0)with other states on the Fermi surface, for
B=0T andB=30T. The radius indicates thewavefunction overlap and the forward directed statemarks an overlap of 1. (f)
Magnetoresistance (black line) andHall resistivity (red line) arising from the response of the Fermi wave vectors, Fermi velocities and
scattering times to a perpendicular, externalmagnetic field.

5

J. Phys. Commun. 3 (2019) 115021 J Cde Boer et al



E E M E , 18kC, SO
2

Z
2= +  ( ) ( )

with the spinors

A

E

E M E ie

E

E M E ie

1
, 19

k

k

C
C

i

C
i

,
0

SO

, Z

SO

, Z

y =
-


-

q

q








 

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
( )

( )

( )

where A E E M E4 kC C0 , , Z= -  ( ) is the normalization factor. These two spinors are orthogonal for every
angle inmomentum-space, so that interband scattering is forbidden in the bulk conduction band. Using
S 2y y= á ¢ ñ  ∣ ∣ ∣ , we find for the helicalmagnetoresistance
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whereM=M0 is themomentum-independent part of M M M k M kk z0 1
2

2
2= + + and represents the gap size.

The±sign indicates that themass term acts as an offset to themagnetic field term. Infigure 3, it is shown that
the offset due tofiniteM significantly reduces the effect ofmagnetic fields that are small with respect toM (as is
the case for Bi-based TIs).Moreover, the opposite response of the two helicities to themagnetic field causes the
MR from the separate bands to cancel. Sowhile interband scattering is forbidden in the TI bulk (which
suppressed helicalMR inRashba surface states), it is the gapM thatmakes the helicalMR effect small.

Similar to the 2DRashba system, the Zeeman-shift works in opposite ways for the Fermi velocities of the two
helicities,
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As a consequence, also the correction to the Fermi velocity by the Zeeman-shift does not cause any
magnetoresistance in the bulk of topological insulators, similar to the case for 2DRashba states.

In the limit M 0 , equation (17) describes an accidental DSM,with two linear, orthogonal Dirac cones.
Because of the 3D character, we should also take the kz-dependence into account and use

H v s k s k v k s g B s2 . 22DSM
z y x x y z z y B z zLiu 0 0 s s m s= - + + ( ) ( ) ( )

In spherical coordinates and in terms of E v kSO =  , E v kz zSO =^ andEZ=gμBBz/2, the dispersion of the
conduction band

E E E Esin cos 23C, SO
2 2

SO Z
2j j= +  ^ ( ) ( )

Figure 3.Mass-termdependence of the scattering rate.The black line represents themagneticfield dependence of the scattering rate
for M 0 and shows the recovery of the factor 4 from the surfaceDirac cone. The normalized scattering rate corresponds to the
normalized wavefunction overlap. The solid(dashed) red line indicates the scattering rate of the+(−) helicity for nonzeromass term
M. Themass term acts as an offset to the Zeeman term, but in opposite directions for the different helicities.
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and the spinor parts of thewavefunctions become
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with thenormalization factor A E2 sin 22
SO
2j= +  E E Ecos CZ SO ,

2j + ^ ( ) . Aswas the case for the

bulk 3DTI spinors of the last section, the two spinors for the conductionband side of H DSM
Liu are completely

orthogonal.Note that forj=π/2,we recover a two-folddegenerate version of the 2D surfaceDirac cone system
used in the above,which indicates that large, helicalmagnetoresistancemay bepresent in this system.However, the
3D character of theDSMallows themagneticfield term to be just absorbed into k k g B vz z B Fm¢ =  ( ) and the
Dirac system simply splits into two, ungappedWeyl cones.Not only does the absence of a gap discard the effect of
theZeeman-shift on the Fermi velocity, it alsomeans that the branches are not hybridized and that even inhigh
magneticfields, direct backscattering is still not possiblewithin this linearizedmodel. Therefore, 3DDirac
semimetals shouldbe free of both helical andZeeman-shift inducedmagnetoresistance.

5. Conclusions

In this work, we studied howmagnetotransport in topologicalmaterials can originate directly from a generic TI
Hamiltonianwith a Zeeman term.We found that the experimentally observed largemagnetoresistance in Bi-
based 3D topological insulators [1, 3–7] can partially be explained by detailed effects incorporated in themodel
Hamiltonians.While we found no significant contributions to themagnetoresistance by topological bulk or
surface Rashba states (apart frompossibly causingmultibandmagnetoresistance), surfaceDirac cones can cause
large, non-saturating, linearmagnetoresistance through both the scattering time via broken time reversal
symmetry and a correction to the Fermi velocity bymeans of a Zeeman-shift. As these effects are the largest when
the Zeeman energy is of the same order as the spin-orbit energy, a large, non-saturatingmagnetoresistancemay
be a telltale sign of a Fermi level very close to theDirac point.
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