1,918 research outputs found

    The design concept of the 6-degree-of-freedom hydraulic shaker at ESTEC

    Get PDF
    The European Space Agency (ESA) has decided to extend its test facilities at the European Space and Technology Center (ESTEC) at Noordwijk, The Netherlands, by implementing a 6-degree-of-freedom hydraulic shaker. This shaker will permit vibration testing of large payloads in the frequency range from 0.1 Hz to 100 Hz. Conventional single axis sine and random vibration modes can be applied without the need for a configuration change of the test set-up for vertical and lateral excitations. Transients occurring during launch and/or landing of space vehicles can be accurately simulated in 6-degrees-of-freedom. The performance requirements of the shaker are outlined and the results of the various trade-offs, which are investigated during the initial phase of the design and engineering program are provided. Finally, the resulting baseline concept and the anticipated implementation plan of the new test facility are presented

    Thermodynamics of an incommensurate quantum crystal

    Full text link
    We present a simple theory of the thermodynamics of an incommensurate quantum solid. The ground state of the solid is assumed to be an incommensurate crystal, with quantum zero-point vacancies and interstitials and thus a non-integer number of atoms per unit cell. We show that the low temperature variation of the net vacancy concentration should be as T4T^4, and that the first correction to the specific heat due to this varies as T7T^7; these are quite consistent with experiments on solid 4^4He. We also make some observations about the recent experimental reports of ``supersolidity'' in solid 4^4He that motivate a renewed interest in quantum crystals.Comment: revised, new title, somewhat expande

    Generalization of Gutzwiller Approximation

    Full text link
    We derive expressions required in generalizing the Gutzwiller approximation to models comprising arbitrarily degenerate localized orbitals.Comment: 6 pages, 1 figure, to appear in J.Phys.Soc.Jpn. vol.6

    Temperature Dependence of Interlayer Magnetoresistance in Anisotropic Layered Metals

    Full text link
    Studies of interlayer transport in layered metals have generally made use of zero temperature conductivity expressions to analyze angle-dependent magnetoresistance oscillations (AMRO). However, recent high temperature AMRO experiments have been performed in a regime where the inclusion of finite temperature effects may be required for a quantitative description of the resistivity. We calculate the interlayer conductivity in a layered metal with anisotropic Fermi surface properties allowing for finite temperature effects. We find that resistance maxima are modified by thermal effects much more strongly than resistance minima. We also use our expressions to calculate the interlayer resistivity appropriate to recent AMRO experiments in an overdoped cuprate which led to the conclusion that there is an anisotropic, linear in temperature contribution to the scattering rate and find that this conclusion is robust.Comment: 8 pages, 4 figure

    Conduction spectroscopy of a proximity induced superconducting topological insulator

    Get PDF
    The combination of superconductivity and the helical spin-momentum locking at the surface state of a topological insulator (TI) has been predicted to give rise to p-wave superconductivity and Majorana bound states. The superconductivity can be induced by the proximity effect of a an s-wave superconductor (S) into the TI. To probe the superconducting correlations inside the TI, dI/dV spectroscopy has been performed across such S-TI interfaces. Both the alloyed Bi1.5_{1.5}Sb0.5_{0.5}Te1.7_{1.7}Se1.3_{1.3} and the stoichiometric BiSbTeSe2_2 have been used as three dimensional TI. In the case of Bi1.5_{1.5}Sb0.5_{0.5}Te1.7_{1.7}Se1.3_{1.3}, the presence of disorder induced electron-electron interactions can give rise to an additional zero-bias resistance peak. For the stoichiometric BiSbTeSe2_2 with less disorder, tunnel barriers were employed in order to enhance the signal from the interface. The general observations in the spectra of a large variety of samples are conductance dips at the induced gap voltage, combined with an increased sub-gap conductance, consistent with p-wave predictions. The induced gap voltage is typically smaller than the gap of the Nb superconducting electrode, especially in the presence of an intentional tunnel barrier. Additional uncovered spectroscopic features are oscillations that are linearly spaced in energy, as well as a possible second order parameter component.Comment: Semiconductor Science and Technology; Special Issue on Hybrid Quantum Materials and Device

    Analytical calculation of the Green's function and Drude weight for a correlated fermion-boson system

    Full text link
    In classical Drude theory the conductivity is determined by the mass of the propagating particles and the mean free path between two scattering events. For a quantum particle this simple picture of diffusive transport loses relevance if strong correlations dominate the particle motion. We study a situation where the propagation of a fermionic particle is possible only through creation and annihilation of local bosonic excitations. This correlated quantum transport process is outside the Drude picture, since one cannot distinguish between free propagation and intermittent scattering. The characterization of transport is possible using the Drude weight obtained from the f-sum rule, although its interpretation in terms of free mass and mean free path breaks down. For the situation studied we calculate the Green's function and Drude weight using a Green's functions expansion technique, and discuss their physical meaning.Comment: final version, minor correction

    Gate-tunable band structure of the LaAlO3_3-SrTiO3_3 interface

    Get PDF
    The 2-dimensional electron system at the interface between LaAlO3_{3} and SrTiO3_{3} has several unique properties that can be tuned by an externally applied gate voltage. In this work, we show that this gate-tunability extends to the effective band structure of the system. We combine a magnetotransport study on top-gated Hall bars with self-consistent Schr\"odinger-Poisson calculations and observe a Lifshitz transition at a density of 2.9×10132.9\times10^{13} cm−2^{-2}. Above the transition, the carrier density of one of the conducting bands decreases with increasing gate voltage. This surprising decrease is accurately reproduced in the calculations if electronic correlations are included. These results provide a clear, intuitive picture of the physics governing the electronic structure at complex oxide interfaces.Comment: 14 pages, 4 figure

    Phase diagrams of correlated electrons: systematic corrections to the mean field theory

    Full text link
    Perturbative corrections to the mean field theory for particle-hole instabilities of interacting electron systems are computed within a scheme which is equivalent to the recently developed variational approach to the Kohn-Luttinger superconductivity. This enables an unbiased comparison of particle-particle and particle-hole instabilities within the same approximation scheme. A spin-rotation invariant formulation for the particle-hole instabilities in the triplet channel is developed. The method is applied to the phase diagram of the t-t' Hubbard model on the square lattice. At the Van Hove density, antiferromagnetic and d-wave Pomeranchuk phases are found to be stable close to half filling. However, the latter phase is confined to an extremely narrow interval of densities and away from the singular filling, d-wave superconducting instability dominates

    Circuit theory for crossed Andreev reflection and nonlocal conductance

    Full text link
    Nonlocal currents, in devices where two normal metal terminals are contacted to a superconductor, are determined using the circuit theory of mesoscopic superconductivity. We calculate the conductance associated with crossed Andreev reflection and electron transfer between the two normal metal terminals, in addition to the conductance from direct Andreev reflection and quasiparticle tunneling. Dephasing and proximity effect are taken into account.Comment: Included in special issue Spin Physics of Superconducting heterostructures of Applied Physics A: Materials Science & Processin
    • …
    corecore