25 research outputs found

    Interaction between counter-propagating quantum Hall edge channels in the 3D topological insulator BiSbTeSe2_2

    Get PDF
    The quantum Hall effect is studied in the topological insulator BiSbTeSe2_2. By employing top- and back-gate electric fields at high magnetic field, the Landau levels of the Dirac cones in the top and bottom topological surface states can be tuned independently. When one surface is tuned to the electron-doped side of the Dirac cone and the other surface to the hole-doped side, the quantum Hall edge channels are counter-propagating. The opposite edge mode direction, combined with the opposite helicities of top and bottom surfaces, allows for scattering between these counter-propagating edge modes. The total Hall conductance is integer valued only when the scattering is strong. For weaker interaction, a non-integer quantum Hall effect is expected and measured

    Non-local signatures of the chiral magnetic effect in Dirac semimetal Bi0.97_{0.97}Sb0.03_{0.03}

    Get PDF
    The field of topological materials science has recently been focussing on three-dimensional Dirac semimetals, which exhibit robust Dirac phases in the bulk. However, the absence of characteristic surface states in accidental Dirac semimetals (DSM) makes it difficult to experimentally verify claims about the topological nature using commonly used surface-sensitive techniques. The chiral magnetic effect (CME), which originates from the Weyl nodes, causes an EB\textbf{E}\cdot\textbf{B}-dependent chiral charge polarization, which manifests itself as negative magnetoresistance. We exploit the extended lifetime of the chirally polarized charge and study the CME through both local and non-local measurements in Hall bar structures fabricated from single crystalline flakes of the DSM Bi0.97_{0.97}Sb0.03_{0.03}. From the non-local measurement results we find a chiral charge relaxation time which is over one order of magnitude larger than the Drude transport lifetime, underlining the topological nature of Bi0.97_{0.97}Sb0.03_{0.03}.Comment: 6 pages, 6 figures + 7 pages of supplemental materia

    4π4\pi periodic Andreev bound states in a Dirac semimetal

    Get PDF
    Electrons in a Dirac semimetals possess linear dispersion in all three spatial dimensions, and form part of a developing platform of novel quantum materials. Bi1x_{1-x}Sbx_x supports a three-dimensional Dirac cone at the Sb-induced band inversion point. Nanoscale phase-sensitive junction technology is used to induce superconductivity in this Dirac semimetal. Radio frequency irradiation experiments reveal a significant contribution of 4π\pi-periodic Andreev bound states to the supercurrent in Nb-Bi0.97_{0.97}Sb0.03_{0.03}-Nb Josephson junctions. The conditions for a substantial 4π4\pi contribution to the supercurrent are favourable because of the Dirac cone's topological protection against backscattering, providing very broad transmission resonances. The large g-factor of the Zeeman effect from a magnetic field applied in the plane of the junction, allows tuning of the Josephson junctions from 0 to π\pi regimes.Comment: Supplementary information is include

    Zeeman effect induced 0-π\pi transitions in ballistic Dirac semimetal Josephson junctions

    Get PDF
    One of the consequences of Cooper pairs having a finite momentum in the interlayer of a Josephson junction, is π\pi-junction behavior. The finite momentum can either be due to an exchange field in ferromagnetic Josephson junctions, or due to the Zeeman effect. Here, we report the observation of Zeeman effect induced 0-π\pi transitions in Bi1x_{1-x}Sbx_x, 3D Dirac semimetal-based Josephson junctions. The large g-factor of the Zeeman effect from a magnetic field applied in the plane of the junction allows tuning of the Josephson junctions from 0- to π\pi- regimes. This is revealed by sign changes in the modulation of the critical current by applied magnetic field of an asymmetric superconducting quantum interference device (SQUID). Additionally, we directly measure a non-sinusoidal current-phase relation in the asymmetric SQUID, consistent with models for ballistic Josephson transport

    Predicting 30-day mortality in intensive care unit patients with ischaemic stroke or intracerebral haemorrhage

    Get PDF
    BACKGROUND Stroke patients admitted to an intensive care unit (ICU) follow a particular survival pattern with a high short-term mortality, but if they survive the first 30 days, a relatively favourable subsequent survival is observed. OBJECTIVES The development and validation of two prognostic models predicting 30-day mortality for ICU patients with ischaemic stroke and for ICU patients with intracerebral haemorrhage (ICH), analysed separately, based on parameters readily available within 24 h after ICU admission, and with comparison with the existing Acute Physiology and Chronic Health Evaluation IV (APACHE-IV) model. DESIGN Observational cohort study. SETTING All 85 ICUs participating in the Dutch National Intensive Care Evaluation database. PATIENTS All adult patients with ischaemic stroke or ICH admitted to these ICUs between 2010 and 2019. MAIN OUTCOME MEASURES Models were developed using logistic regressions and compared with the existing APACHE-IV model. Predictive performance was assessed using ROC curves, calibration plots and Brier scores. RESULTS We enrolled 14 303 patients with stroke admitted to ICU: 8422 with ischaemic stroke and 5881 with ICH. Thirty-day mortality was 27% in patients with ischaemic stroke and 41% in patients with ICH. Important factors predicting 30-day mortality in both ischaemic stroke and ICH were age, lowest Glasgow Coma Scale (GCS) score in the first 24 h, acute physiological disturbance (measured using the Acute Physiology Score) and the application of mechanical ventilation. Both prognostic models showed high discrimination with an AUC 0.85 [95% confidence interval (CI), 0.84 to 0.87] for patients with ischaemic stroke and 0.85 (0.83 to 0.86) in ICH. Calibration plots and Brier scores indicated an overall good fit and good predictive performance. The APACHE-IV model predicting 30-day mortality showed similar performance with an AUC of 0.86 (95% CI, 0.85 to 0.87) in ischaemic stroke and 0.87 (0.86 to 0.89) in ICH. CONCLUSION We developed and validated two prognostic models for patients with ischaemic stroke and ICH separately with a high discrimination and good calibration to predict 30-day mortality within 24 h after ICU admission.</p

    Predicting 30-day mortality in intensive care unit patients with ischaemic stroke or intracerebral haemorrhage

    Get PDF
    BACKGROUND Stroke patients admitted to an intensive care unit (ICU) follow a particular survival pattern with a high short-term mortality, but if they survive the first 30 days, a relatively favourable subsequent survival is observed. OBJECTIVES The development and validation of two prognostic models predicting 30-day mortality for ICU patients with ischaemic stroke and for ICU patients with intracerebral haemorrhage (ICH), analysed separately, based on parameters readily available within 24 h after ICU admission, and with comparison with the existing Acute Physiology and Chronic Health Evaluation IV (APACHE-IV) model. DESIGN Observational cohort study. SETTING All 85 ICUs participating in the Dutch National Intensive Care Evaluation database. PATIENTS All adult patients with ischaemic stroke or ICH admitted to these ICUs between 2010 and 2019. MAIN OUTCOME MEASURES Models were developed using logistic regressions and compared with the existing APACHE-IV model. Predictive performance was assessed using ROC curves, calibration plots and Brier scores. RESULTS We enrolled 14 303 patients with stroke admitted to ICU: 8422 with ischaemic stroke and 5881 with ICH. Thirty-day mortality was 27% in patients with ischaemic stroke and 41% in patients with ICH. Important factors predicting 30-day mortality in both ischaemic stroke and ICH were age, lowest Glasgow Coma Scale (GCS) score in the first 24 h, acute physiological disturbance (measured using the Acute Physiology Score) and the application of mechanical ventilation. Both prognostic models showed high discrimination with an AUC 0.85 [95% confidence interval (CI), 0.84 to 0.87] for patients with ischaemic stroke and 0.85 (0.83 to 0.86) in ICH. Calibration plots and Brier scores indicated an overall good fit and good predictive performance. The APACHE-IV model predicting 30-day mortality showed similar performance with an AUC of 0.86 (95% CI, 0.85 to 0.87) in ischaemic stroke and 0.87 (0.86 to 0.89) in ICH. CONCLUSION We developed and validated two prognostic models for patients with ischaemic stroke and ICH separately with a high discrimination and good calibration to predict 30-day mortality within 24 h after ICU admission.</p
    corecore