32 research outputs found

    Caloric restriction, aerobic exercise training and soluble lectin-like oxidized LDL receptor-1 levels in overweight and obese post-menopausal women

    Get PDF
    Background—Elevated circulating levels of soluble lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1) have been observed in obese persons and are reduced by weight loss. However, it is not known if combining caloric restriction (CR) with exercise training is better in reducing sLOX-1 levels than CR alone. Objective—We examined whether the addition of aerobic exercise to a weight loss intervention differentially affects sLOX-1 levels in 61 abdominally obese postmenopausal women randomly assigned to a CR only (n=22), CR + moderate-intensity exercise (n=22), or CR + vigorous intensity exercise (n=17) intervention for 20 weeks. The caloric deficit was ~2,800 kcal/week for all groups. Results—The intervention groups were similar at baseline with respect to body weight, body composition, lipids, and blood pressure. However, plasma sLOX-1 levels were higher in the CR only group (99.90 ± 8.23 pg/ml) compared to both the CR + moderate-intensity exercise (69.39 ± 8.23 pg/ml, p=0.01) and CR + vigorous-intensity exercise (72.83 ± 9.36 pg/ml, p=0.03) groups. All three interventions significantly reduced body weight (~14%), body fat, and waist and hip circumferences to a similar degree. These changes were accompanied by a 23% reduction in sLOX-1 levels overall (−19.00 ± 30.08 pg/ml, p\u3c0.0001), which did not differ among intervention groups (p=0.13). Changes in body weight, body fat, and VO2 max were not correlated with changes in sLOX-1 levels. In multiple regression analyses in all women combined, baseline sLOX-1 levels (β = − 0.70 ± 0.06, p\u3c0.0001), age (β = 0.92 ± 0.43, p=0.03) and baseline BMI (β = 1.88 ± 0.66, p=0.006) were independent predictors of the change in sLOX-1 with weight loss. Conclusions—Weight loss interventions of equal energy deficit have similar effects on sLOX-1 levels in overweight and obese postmenopausal women, with the addition of aerobic exercise having no added benefit when performed in conjunction with CR

    Changes in Adiposity and Cerebrospinal Fluid Biomarkers Following a Modified Mediterranean Ketogenic Diet in Older Adults at Risk for Alzheimer's Disease

    Get PDF
    Background: Ketogenic diets have been used to treat both obesity and neurological disorders, including epilepsy and more recently Alzheimer's disease (AD), likely due to favorable effects on both central and peripheral metabolism. Improvements in body composition have also been reported; however, it is unclear if diet-induced changes in adiposity are related to improvements in AD and related neuropathology. Purpose: We examined the effects of a Modified Mediterranean Ketogenic (MMK) diet vs. an American Heart Association (AHA) diet on body weight, body composition, and body fat distribution and their association with cerebrospinal fluid (CSF) biomarkers in older adults at risk for AD. Methods: Twenty adults (mean age: 64.3 ± 6.3 years, 35% Black, 75% female) were randomly assigned to a crossover trial starting with either the MMK or AHA diet for 6 weeks, followed by a 6-week washout and then the opposite diet for 6 weeks. At baseline and after each diet adiposity was assessed by dual-energy x-ray absorptiometry and CSF biomarkers were measured. Linear mixed effect models were used to examine the effect of diet on adiposity. Spearman correlations were examined to assess associations between adiposity and CSF biomarkers. Results: At baseline there was a high prevalence of overweight/obesity and central adiposity, and higher visceral fat and lower peripheral fat were associated with an adverse CSF biomarker profile. The MMK and AHA diets led to similar improvements in body composition and body fat distribution. Significant correlations were found between changes in adiposity and changes in CSF biomarkers (r's = 0.63-0.92, p's < 0.05), with notable differences by diet. Decreases in body fat on the MMK diet were related to changes in Aβ biomarkers, whereas decreases in body fat on the AHA diet were related to changes in tau biomarkers and cholinesterase activity. Interestingly, increases in CSF Aβ on the MMK diet occurred in those with less fat loss. Conclusion: An MMK diet leads to favorable changes in body composition, body fat distribution, and CSF biomarkers. Our data suggest that modest weight loss that maximizes visceral fat loss and preserves peripheral fat, may have the greatest impact on brain health. Clinical Trial Registration: [www.ClinicalTrials.gov], identifier [NCT02984540]

    Pericardial Fat and Myocardial Perfusion in Asymptomatic Adults from the Multi-Ethnic Study of Atherosclerosis

    Get PDF
    BACKGROUND:Pericardial fat has adverse effects on the surrounding vasculature. Previous studies suggest that pericardial fat may contribute to myocardial ischemia in symptomatic individuals. However, it is unknown if pericardial fat has similar effects in asymptomatic individuals. METHODS:We determined the association between pericardial fat and myocardial blood flow (MBF) in 214 adults with no prior history of cardiovascular disease from the Minnesota field center of the Multi-Ethnic Study of Atherosclerosis (43% female, 56% Caucasian, 44% Hispanic). Pericardial fat volume was measured by computed tomography. MBF was measured by MRI at rest and during adenosine-induced hyperemia. Myocardial perfusion reserve (PR) was calculated as the ratio of hyperemic to resting MBF. RESULTS:Gender-stratified analyses revealed significant differences between men and women including less pericardial fat (71.9±31.3 vs. 105.2±57.5 cm(3), p<0.0001) and higher resting MBF (1.12±0.23 vs. 0.93±0.19 ml/min/g, p<0.0001), hyperemic MBF (3.49±0.76 vs. 2.65±0.72 ml/min/g, p<0.0001), and PR (3.19±0.78 vs. 2.93±0.89, p = 0.03) in women. Correlations between pericardial fat and clinical and hemodynamic variables were stronger in women. In women only (p = 0.01 for gender interaction) higher pericardial fat was associated with higher resting MBF (p = 0.008). However, this association was attenuated after accounting for body mass index or rate-pressure product. There were no significant associations between pericardial fat and hyperemic MBF or PR after multivariate adjustment in either gender. In logistic regression analyses there was also no association between impaired coronary vasoreactivity, defined as having a PR <2.5, and pericardial fat in men (OR, 1.18; 95% CI, 0.82-1.70) or women (OR, 1.11; 95% CI, 0.68-1.82). CONCLUSIONS:Our data fail to support an independent association between pericardial fat and myocardial perfusion in adults without symptomatic cardiovascular disease. Nevertheless, these findings highlight potentially important differences between asymptomatic and symptomatic individuals with respect to the underlying subclinical disease burden
    corecore