210 research outputs found

    Nanoporous silica-based protocells at multiple scales for designs of life and nanomedicine.

    Get PDF
    Various protocell models have been constructed de novo with the bottom-up approach. Here we describe a silica-based protocell composed of a nanoporous amorphous silica core encapsulated within a lipid bilayer built by self-assembly that provides for independent definition of cell interior and the surface membrane. In this review, we will first describe the essential features of this architecture and then summarize the current development of silica-based protocells at both micro- and nanoscale with diverse functionalities. As the structure of the silica is relatively static, silica-core protocells do not have the ability to change shape, but their interior structure provides a highly crowded and, in some cases, authentic scaffold upon which biomolecular components and systems could be reconstituted. In basic research, the larger protocells based on precise silica replicas of cells could be developed into geometrically realistic bioreactor platforms to enable cellular functions like coupled biochemical reactions, while in translational research smaller protocells based on mesoporous silica nanoparticles are being developed for targeted nanomedicine. Ultimately we see two different motivations for protocell research and development: (1) to emulate life in order to understand it; and (2) to use biomimicry to engineer desired cellular interactions

    Identification and display of CRLF2 ligands for targeted nanoparticle delivery to acute lymphoblastic leukemia.

    Get PDF

    Scalable, biofunctional, ultra-stable nano- bio- composite materials containing living cells

    Get PDF
    Three-dimensional encapsulation of cells within nanostructured silica gels or matrices enables applications as diverse as biosensors, microbial fuel cells, artificial organs, and vaccines. It also allows study of individual cell behaviors. Recent progress has improved the performance and flexibility of cellular encapsulation, yet there remains a need for robust scalable processes for large format production of cell-encapsulating materials. Here, we detail two novel techniques, that enable the large-scale production of functional Nano-Bio-Composites (NBCs) containing living cells within ordered 3-D lipid/silica nanostructures: 1) thick-casting and 2) spray drying. Furthermore, we detail a third technique for material scaling in which aqueous, silicate-based gel monoliths encapsulate biofunctional yeast or bacteria. Both dry processes are demonstrated to work with multiple cell types and result in dry powders exhibiting a unique combination of properties including: highly ordered 3-D nanostructure, extended lipid fluidity, tunable macro-morphologies and aerodynamic diameters, and unexpectedly high physical strength. Nanoindentation of the encasing nanostructure revealed Young’s modulus and hardness of 13 and 1.4 GPa respectively, which was unexpected considering the low processing conditions. We hypothesized and confirmed that NBC-encapsulated cells would remain viable for extended periods of time under elevated aging conditions. We attribute this due to the high material strength as observed with nanoindentation, which would prevent cell growth and force bacteria into viable but not culturable (VBNC) states. In concordance with the VBNC state, cellular ATP levels remained elevated even over eight months confirming temperature stable, viable cells. However, their ability to undergo resuscitation and enter growth phase greatly decreased with time in the VBNC state. A quantitative method of determining resuscitation frequencies was developed and showed that, after 36 weeks in an NBC-induced VBNC state, less than 1 in 10,000 cells underwent resuscitation. We verify the VBNC phenotype in gel-encapsulated cells by studying cellular RNA expression levels. These latent behaviors are further demonstrated with an in-vivo immunological study in which mice, immunized with NBCs containing the vaccine Bacillus Calmette-Guérin, were observed to be immunized against a latent form of Tuberculosis. This finding is, in our understanding, the first demonstration of a latent disease-specific live cell immunotherapy. The NBC platform production of industrially scalable quantities of VBNC cells is of interest for research in bacterial persistence and screening of drugs targeting such cells. NBC’s may also enable long-term preservation of living cells for applications in cell-based sensing and the packaging and delivery of live-cell vaccines. Moreover, our methodology represents a novel process for preparing formulations of latent cells in-silico, which could find application in basic cellular research and for the development of a latent-specific vaccine

    Aerosol-Assisted Synthesis of Monodisperse Single-Crystalline α-Cristobalite Nanospheres

    Get PDF
    Monodisperse single-crystalline α-cristobalite nanospheres have been synthesized by hydrocarbon-pyrolysis-induced carbon deposition on amorphous silica aerosol nanoparticles, devitrification of the coated silica at high temperature, and subsequent carbon removal by oxidation. The nanosphere size can be well controlled by tuning the size of the colloidal silica precursor. Uniform, high-purity nanocrystalline α-cristobalite is important for catalysis, nanocomposites, advanced polishing, and understanding silica nanotoxicology

    Nature versus nurture in cellular behavior and disease.

    Get PDF
    • …
    corecore