2,148 research outputs found

    Electron self-energy in A3C60 (A=K, Rb): Effects of t1u plasmon in GW approximation

    Full text link
    The electron self-energy of the t1u states in A3C60 (A=K, Rb) is calculated using the so-called GW approximation. The calculation is performed within a model which considers the t1u charge carrier plasmon at 0.5 eV and takes into account scattering of the electrons within the t1u band. A moderate reduction (35 %) of the t1u band width is obtained.Comment: 4 pages, revtex, 1 figure more information at http://www.mpi-stuttgart.mpg.de/dokumente/andersen/fullerene

    Approach to the extremal limit of the Schwarzschild-de Sitter black hole

    Full text link
    The quasinormal-mode spectrum of the Schwarzschild-de Sitter black hole is studied in the limit of near-equal black-hole and cosmological radii. It is found that the mode_frequencies_ agree with the P"oschl-Teller approximation to one more order than previously realized, even though the effective_potential_ does not. Whether the spectrum approaches the limiting one uniformly in the mode index is seen to depend on the chosen units (to the order investigated). A perturbation framework is set up, in which these issues can be studied to higher order in future.Comment: REVTeX4, 4pp., no figures. N.B. "Alec" is my first, and "Maassen van den Brink" my family name. v2: added numerical verificatio

    Spin-Orbit-Induced Magnetic Anisotropy for Impurities in Metallic Samples I. Surface Anisotropy

    Full text link
    Motivated by the recent measurements of Kondo resistivity in thin films and wires, where the Kondo amplitude is suppressed for thinner samples, the surface anisotropy for magnetic impurities is studied. That anisotropy is developed in those cases where in addition to the exchange interaction with the impurity there is strong spin-orbit interaction for conduction electrons around the impurity in the ballistic region. The asymmetry in the neighborhood of the magnetic impurity exhibits the anisotropy axis nn which, in the case of a plane surface, is perpendicular to the surface. The anisotropy energy is ΔE=Kd(nS)2\Delta E=K_d (nS)^2 for spin SS, and the anisotropy constant KdK_d is inversionally proportional to distance dd measured from the surface and Kd>0K_d>0. Thus at low temperature the spin is frozen in a singlet or doublet of lowest energy. The influence of that anisotropy on the electrical resistivity is the subject of the following paper (part II).Comment: 28 pages, RevTeX (using epsfig), 8 eps figures included, submitted to PR

    Single Hole Green's Functions in Insulating Copper Oxides at Nonzero Temperature

    Full text link
    We consider the single hole dynamics in a modified tJt-J model at finite temperature. The modified model includes a next nearest (tt') and next-next nearest (tt'') hopping. The model has been considered before in the zero temperature limit to explain angle resolved photo-emission measurements. We extend this consideration to the case of finite temperature where long-range anti-ferromagnetic order is destroyed, using the self-consistent Born approximation. The Dyson equation which relates the single hole Green's functions for a fixed pseudo-spin and for fixed spin is derived. The Green's function with fixed pseudo-spin is infrared stable but the Green's function with fixed spin is close to an infrared divergency. We demonstrate how to renormalize this Green's function in order to assure numerical convergence. At non-zero temperature the quasi-particle peaks are found to shift down in energy and to be broadened.Comment: 7 pages, RevTex, 5 Postscript figure

    Scattering polarization of hydrogen lines in the presence of turbulent electric fields

    Full text link
    We study the broadband polarization of hydrogen lines produced by scattering of radiation, in the presence of isotropic electric fields. In this paper, we focus on two distinct problems: a) the possibility of detecting the presence of turbulent electric fields by polarimetric methods, and b) the influence of such fields on the polarization due to a macroscopic, deterministic magnetic field. We found that isotropic electric fields decrease the degree of linear polarization in the scattered radiation, with respect to the zero-field case. On the other hand, a distribution of isotropic electric fields superimposed onto a deterministic magnetic field can generate a significant increase of the degree of magnetic-induced, net circular polarization. This phenomenon has important implications for the diagnostics of magnetic fields in plasmas using hydrogen lines, because of the ubiquitous presence of the Holtsmark, microscopic electric field from neighbouring ions. In particular, previous solar magnetographic studies of the Balmer lines of hydrogen may need to be revised because they neglected the effect of turbulent electric fields on the polarization signals. In this work, we give explicit results for the Lyman-alpha and Balmer-alpha lines.Comment: 15 pages, 6 figure

    Traumatic rupture of the descending thoracic aorta

    Get PDF
    The management of acute traumatic rupture of the descending thoracic aorta at Groote Schuur Hospital between January 1984 and December 1989 is reviewed. Aortic rupture was diagnosed angiographically in 18 of 150 patients (12%), who underwent aortography because this injury was suspected. However. 3 of these patients had false-positive angiograms. The diagnosis was initially missed in 31% of patients, and this contributed to morbidity and mortality. Simple aortic crossclamping (N = 8) was used before September 1988 and 3 patients died - 1 intra-operatively from cardiac arrhythmia and 2 postoperatively, where major peri-operative haemorrhage had occurred. In contrast, partial heparin-less bypass (N = 5) using a centrifugal vortex pump was used after September 1988, and there were no haemorrhagic or paraplegic complications or mortality in this group. This technique is safe and appears to be superior to simple aortic crossclamping in managing this condition

    Spin dynamics of low-dimensional excitons due to acoustic phonons

    Full text link
    We investigate the spin dynamics of excitons interacting with acoustic phonons in quantum wells, quantum wires and quantum disks by employing a multiband model based on the 4×44\times4 Luttinger Hamiltonian. We also use the Bir-Pikus Hamiltonian to model the coupling of excitons to both longitudinal acoustic phonons and transverse acoustic phonons, thereby providing us with a realistic framework in which to determine details of the spin dynamics of excitons. We use a fractional dimensional formulation to model the excitonic wavefunctions and we demonstrate explicitly the decrease of spin relaxation time with dimensionality. Our numerical results are consistent with experimental results of spin relaxation times for various configurations of the GaAs/Al0.3_{0.3}Ga0.7_{0.7}As material system. We find that longitudinal and transverse acoustic phonons are equally significant in processes of exciton spin relaxations involving acoustic phonons.Comment: 24 pages, 3 figure

    Charge and orbital order in half-doped manganites

    Full text link
    An explanation is given for the charge order, orbital order and insulating state observed in half-doped manganese oxides, such as Nd1/2_{1/2}Sr1/2_{1/2}MnO3_{3}. The competition between the kinetic energy of the electrons and the magnetic exchange energy drives the formation of effectively one-dimensional ferromagnetic zig-zag chains. Due to a topological phase factor in the hopping, the chains are intrinsically insulating and orbital-ordered. Most surprisingly, the strong Coulomb interaction between electrons on the same Mn-ion leads to the experimentally observed charge ordering. For doping less than 1/2 the system is unstable towards phase separation into a ferromagnetic metallic and charge-ordered insulating phase.Comment: To appear in Phys. Rev. Lett., 4 pages, 4 figure

    Time Evolution of tunneling and decoherence: soluble model

    Get PDF
    Decoherence effects associated to the damping of a tunneling two-level system are shown to dominate the tunneling probability at short times in strong coupling regimes in the context of a soluble model. A general decomposition of tunneling rates in dissipative and unitary parts is implemented. Master equation treatments fail to describe the model system correctly when more than a single relaxation time is involved
    corecore