3 research outputs found

    The training-induced changes on automatism, conduction and myocardial refractoriness are not mediated by parasympathetic postganglionic neurons activity

    Full text link
    The purpose of this study is to test the role that parasympathetic postganglionic neurons could play on the adaptive electrophysiological changes produced by physical training on intrinsic myocardial automatism, conduction and refractoriness. Trained rabbits were submitted to aphysical training protocol on treadmill during 6 weeks. The electrophysiological study was performed in an isolated heart preparation. The investigated myocardial properties were: (a) sinus automatism, (b) atrioventricular and ventriculoatrial conduction, (c) atrial, conduction system and ventricular refractoriness. The parameters to study the refractoriness were obtained by means of extrastimulus test at four diVerent pacing cycle lengths (10% shorter than spontaneous sinus cycle length, 250, 200 and 150 ms) and (d) mean dominant frequency (DF) of the induced ventricular Wbrillation (VF), using a spectral method. The electrophysiological protocol was performed before and during continuous atropine administration (1 ÂżM), in order to block cholinergic receptors. Cholinergic receptor blockade did not modify either the increase in sinus cycle length, atrioventricular conduction and refractoriness (left ventricular and atrioventricular conduction system functional refractory periods) or the decrease of DF of VF. These Wndings reveal that the myocardial electrophysiological modiWcations produced by physical training are not mediated by intrinsic cardiac parasympathetic activity.The authors thank Carmen Rams, Ana Diaz, Pilar Navarro and Cesar Avellaneda for their excellent technical assistance. This work has been supported by grants from the Spanish Ministry of Education and Science (DEP2007-73234-C03-01) and Generalitat Valenciana (PROMETEO 2010/093). M Zarzoso was supported by a research scholarship from Generalitat Valenciana (BFPI/2008/003).Zarzoso Muñoz, M.; Such Miquel, L.; Parra Giraldo, G.; Brines Ferrando, L.; Such, L.; Chorro, F.; Guerrero, J.... (2012). The training-induced changes on automatism, conduction and myocardial refractoriness are not mediated by parasympathetic postganglionic neurons activity. European Journal of Applied Physiology. 112(6):2185-2193. https://doi.org/10.1007/s00421-011-2189-4S218521931126Armour JA, Hopkins DA (1990a) Activity of in vivo canine ventricular neurons. Am J Physiol Heart Circ Physiol 258:H326–H336. doi: 10.1152/ajpregu.00183.2004Armour JA, Hopkins DA (1990b) Activity of canine in situ left atrial ganglion neurons. Am J Physiol Heart Circ Physiol 259:H1207–H1215Armour JA (2004) Cardiac neuronal hierarchy in health and disease. Am J Physiol Regul Integr Comp Physiol 287:R262–R271Armour JA, Murphy DA, Yuan BX, Macdonald S, Hopkins DA (1997) Gross and microscopic anatomy of the human intrinsic cardiac nervous system. Anat Rec 247:289–298Bedford TG, Tipton CM (1987) Exercise training and the arterial baroreflex. J Appl Physiol 63:1926–1932Bonaduce D, Petretta M, Cavallaro V, Apicella C, Ianniciello A, Romano M, Breglio R, Marciano F (1998) Intensive training and cardiac autonomic control in high level athletes. Med Sci Sports Exerc 30:691–696Brack KE, Coote JH, Ng GA (2011) Vagus nerve stimulation protects against ventricular fibrillation independent of muscarinic receptor activation. Cardiovasc Res 91:437–446. doi: 10.1093/cvr/cvr105Brorson L, Conradson TB, Olsson B, Varnauskas E (1976) Right atrial monophasic action potential and effective refractory periods in relation to physical training and maximal heart rate. Cardiovasc Res 10:160–168Carmeliet E, Mubagwa K (1998) Antiarrhythmic drugs and cardiac ion channels: mechanisms of action. Prog Biophys Mol Biol 70:1–72Chorro FJ, CĂĄnoves J, Guerrero J, Mainar L, Sanchis J, Such L, LĂłpez-Merino V (2000) Alteration of ventricular fibrillation by flecainide, verapamil, and sotalol: an experimental study. Circulation 101:1606–1615Di Carlo SE, Bishop VS (1990) Exercise training enhances cardiac afferent inhibition of baroreflex function. Am J Physiol 258:212–220Gagliardi M, Randall WC, Bieger D, Wurster RD, Hopkins DA, Armour JA (1988) Activity of in vivo canine cardiac plexus neurons. Am J Physiol Heart Circ Physiol 255:H789–H800Gao L, Wang W, Liu D, Zucker IH (2007) Exercise training normalizes sympathetic outflow by central antioxidant mechanisms in rabbits with pacing-induced chronic heart failure. Circulation 115:3095–3102. doi: 10.1161/CIRCULATIONAHA.106.677989Gaustad SE, Rolim N, WislĂžff U (2010) A valid and reproducible protocol for testing maximal oxygen uptake in rabbits. Eur J Cardiovasc Prev Rehabil 17:83–88. doi: 10.1097/HJR.0b013e32833090c4GĂłmez-Cabrera MC, BorrĂĄs C, PallardĂł FV, Sastre J, Ji LL, Viña J (2005) Decreasing xanthine oxidase-mediated oxidative stress prevents useful cellular adaptations to exercise in rats. J Physiol 567:113–120. doi: 10.1113/jphysiol.2004.080564Gray AL, Johnson TA, Ardell JL, Massari VJ (2004) Parasympathetic control of the heart II. A novel interganglionic intrinsic cardiac circuit mediates neural control of heart rate. J Appl Physiol 96:2273–2278. doi: 10.1152/japplphysiolHamilton KL, Powers SK, Sugiura T, Kim S, Lennon S, Tumer N, Mehta JL (2001) Short-term exercise training can improve myocardial tolerance to I/R without elevation in heat shock proteins. Am J Physiol Heart Circ Physiol 281:1346–1352Inoue H, Zipes DP (1987) Changes in atrial and ventricular refractoriness and atrioventricular nodal conduction produced by combinations of vagal and sympathetic stimulation that result in a constant spontaneous sinus cycle length. Circ Res 60:942–951Jew KN, Olsson MC, Mokelke EA, Palmer BM, Moore RL (2001) Endurance training alters outward K+ current characteristics in rat cardiocytes. J Appl Physiol 90:1327–1333Johnson TA, Gray AL, Lauenstein JM, Newton SS, Massari VJ (2004) Parasympathetic control of the heart I. An interventriculo-septal ganglion is the major source of the vagal intracardiac innervation of the ventricles. J Appl Physiol 96:2265–2272. doi: 10.1152/japplphysiol.00620.2003Katona PG, McLean M, Dighton DH, Guz A (1982) Sympathetic and parasympathetic cardiac control in athletes and nonathletes at rest. J Appl Physiol 52:1652–1657Lewis SF, Nylander E, Gad P, Areskog N (1980) Non-autonomic component in bradycardia of endurance trained men at rest and during exercise. Acta Physiol Scand 109:297–305Litovsky SH, Antzelevitch C (1990) Differences in the electrophysiological response of canine ventricular subendocardium and subepicardium to acetylcholine and isoproterenol. A direct effect of acetylcholine in ventricular myocardium. Circ Res 67:615–627Löffelholz K (1981) Release of acetylcholine in the isolated heart. Am J Physiol 240(4):H431–H440Lopatin AN, Nichols CG (2001) Inward rectifiers in the heart: an update on I(K1). J Mol Cell Cardiol 33:625–638. doi: 10.1006/jmcc.2001.1344Mace LC, Palmer BM, Brown DA, Jew KN, Lynch JM, Glunt JM, Parsons TA, Cheung JY, Moore RL (2003) Influence of age and run training on cardiac Na+/Ca2+ exchange. J Appl Physiol 95:1994–2003. doi: 10.1152/japplphysiol.00551.2003Martins JB, Zipes DP (1980) Effects of sympathetic and vagal nerves on recovery properties of the endocardium and epicardium of the canine left ventricle. Circ Res 46:100–110Mezzani A, Giovannini T, Michelucci A, Padeletti L, Resina A, Cupelli V, Musante R (1990) Effects of training on the electrophysiologic properties of atrium and accessory pathway in athletes with Wolff–Parkinson–White syndrome. Cardiology 77:295–302Mokelke EA, Palmer BM, Cheung JY, Moore RL (1997) Endurance training does not affect intrinsic calcium current characteristics in rat myocardium. Am J Physiol Heart Circ Physiol 273:H1193–H1197Mont L, Elosua R, Brugada J (2009) Endurance sport practice as a risk factor for atrial fibrillation and atrial flutter. Europace 11:11–17. doi: 10.1093/europace/eun289Moore RL, Korzick DH (1995) Cellular adaptations of the myocardium to chronic exercise. Prog Cardiovasc Dis 37:371–396Negrao CE, Moreira ED, Santos MC, Farah VM, Krieger EM (1992) Vagal function impairment after exercise training. J Appl Physiol 72:1749–1753Ng GA, Brack KE, Coote JH (2001) Effects of direct sympathetic and vagus nerve stimulation on the physiology of the whole heart—a novel model of isolated Langendorff perfused rabbit heart with intact dual autonomic innervation. Exp Physiol 86:319–329Nylander E, Sigvardsson K, Kilbom A (1982) Training-induced bradycardia and intrinsic heart rate in rats. Eur J Appl Physiol Occup Physiol 48:189–199Panfilov AV (2006) Is heart size a factor in ventricular fibrillation? Or how close are rabbit and human hearts? Heart Rhythm 3:862–864. doi: 10.1016/j.hrthm.2005.12.022Papka RE (1976) Studies of cardiac ganglia in pre- and postnatal rabbits. Cell Tissue Res 175:17–35Pardini BJ, Patel KP, Schmid PG, Lund DD (1987) Location, distribution and projections of intracardiac ganglion cells in the rat. J Auton Nerv Syst 20:91–101Scott AS, Eberhard A, Ofir D, Benchetrit G, Dinh TP, Calabrese P, Lesiuk V, Perrault H (2004) Enhanced cardiac vagal efferent activity does not explain training-induced bradycardia. Auton Neurosci 112:60–68. doi: 10.1016/j.autneu.2004.04.006Seals DR, Chase PB (1989) Influence of physical training on HR variability and baroreflex circulatory control. J Appl Physiol 66:1886–1895Shi X, Stevens GHJ, Foresman BH, Stern SA, Raven PB (1995) Autonomic nervous system control of the heart: endurance exercise training. Med Sci Sports Exerc 27:1406–1413Snyders DJ (1999) Structure and function of cardiac potassium channels. Cardiovasc Res 42:377–390Stein R, Moraes RS, Cavalcanti AV, Ferlin EL, Zimerman LI, Ribeiro JP (2000) Atrial automaticity and atrioventricular conduction in athletes: contribution of autonomic regulation. Eur J Appl Physiol 82:155–157Stein R, Moraes RS, Cavalcanti AV, Ferlin EL, Zimerman LI, Ribeiro JP (2002) Intrinsic sinus and atrioventricular node electrophysiologic adaptations in endurance athletes. J Am Coll Cardiol 39:1033–1038Stones R, Billeter R, Zhang H, Harrison S, White E (2009) The role of transient outward K+ current in electrical remodelling induced by voluntary exercise in female rat hearts. Basic Res Cardiol 104:643–652. doi: 10.1007/s00395-009-0030-6Such L, RodrĂ­guez A, Alberola A, LĂłpez L, Ruiz R, Artal L, Pons I, Pons ML, GarcĂ­a C, Chorro FJ (2002) Intrinsic changes on automatism, conduction and refractoriness by exercise in insolated rabbit heart. J Appl Physiol 92:225–229. doi: 10.1111/j.1748-1716.2008.01851.xSuch L, Alberola AM, Such-Miquel L, LĂłpez L, Trapero I, Pelechano F, GĂłmez-Cabrera MC, Tormos A, Millet J, Chorro FJ (2008) Effects of chronic exercise on myocardial refractoriness: a study on isolated rabbit heart. Acta Physiol 193:331–339Vigmond EJ, Tsoi V, Kuo S, Arevalo H, Kneller J, Nattel S, Trayanova N (2004) The effect of vagally induced dispersion of action potential duration on atrial arrhythmogenesis. Heart Rhythm 1:334–344. doi: 10.1016/j.hrthm.2004.03.077Zipes DP, Mihalick MJ, Robbins GT (1974) Effects of selective vagal and stellate ganglion stimulation of atrial refractoriness. Cardiovasc Res 8:647–65

    Effect of chronic exercise on myocardial electrophysiological heterogeneity and stability. Role of intrinsic cholinergic neurons: A study in the isolated rabbit heart

    Full text link
    [EN] A study has been made of the effect of chronic exercise on myocardial electrophysiological heterogeneity and stability, as well as of the role of cholinergic neurons in these changes. Determinations in hearts from untrained and trained rabbits on a treadmill were performed. The hearts were isolated and perfused. A pacing electrode and a recording multielectrode were located in the left ventricle. The parameters determined during induced VF, before and after atropine (1 mu M), were: fibrillatory cycle length (VV), ventricular functional refractory period (FRPVF), normalized energy (NE) of the fibrillatory signal and its coefficient of variation (CV), and electrical ventricular activation complexity, as an approach to myocardial heterogeneity and stability. The VV interval was longer in the trained group than in the control group both prior to atropine (78 +/- 10 vs. 68 +/- 10 ms) and after atropine (76 +/- 8 vs. 67 +/- 10 ms). Likewise, FRPVF was longer in the trained group than in the control group both prior to and after atropine (53 +/- 8 vs. 42 +/- 7 ms and 50 +/- 6 vs. 40 +/- 6 ms, respectively), and atropine did not modify FRPVF. The CV of FRPVF was lower in the trained group than in the control group prior to atropine (12.5 +/- 1.5% vs. 15.1 +/- 3.8%) and, decreased after atropine (15.1 +/- 3.8% vs. 12.2 +/- 2.4%) in the control group. The trained group showed higher NE values before (0.40 +/- 0.04 vs. 0.36 +/- 0.05) and after atropine (0.37 +/- 0.04 vs. 0.34 +/- 0.06; p = 0.08). Training decreased the CV of NE both before (23.3 +/- 2% vs. 25.2 +/- 4%; p = 0.08) and after parasympathetic blockade (22.6 +/- 1% vs. 26.1 +/- 5%). Cholinergic blockade did not modify these parameters within the control and trained groups. Activation complexity was lower in the trained than in the control animals before atropine (34 +/- 8 vs. 41 +/- 5), and increased after atropine in the control group (41 +/- 5 vs. 48 +/- 9, respectively). Thus, training decreases the intrinsic heterogeneity of the myocardium, increases electrophysiological stability, and prevents some modifications due to muscarinic block.This research was supported by the Spanish Ministry of Education and Science, (DEP2007-73234-C03-01 to AMA), http://www.mecd.gob.es/portada-mecd/; and the Generalitat Valenciana (PROMETEO 2010/093 to FJC, and FPI/2008/003 to MZ), http://www.gva.es/va/inicio/presentacion; jsessionid=ydprbDQZTsCTz85W1Such-Miquel, L.; Brines-Ferrando, L.; Alberola, A.; Zarzoso Muñoz, M.; Chorro Gasco, FJ.; Guerrero-MartĂ­nez, JF.; Parra-Giraldo, G.... (2018). Effect of chronic exercise on myocardial electrophysiological heterogeneity and stability. Role of intrinsic cholinergic neurons: A study in the isolated rabbit heart. PLoS ONE. 13(12). https://doi.org/10.1371/journal.pone.0209085S1312Billman, G. E. (2002). Aerobic exercise conditioning: a nonpharmacological antiarrhythmic intervention. Journal of Applied Physiology, 92(2), 446-454. doi:10.1152/japplphysiol.00874.2001Billman, G. E. (2006). A comprehensive review and analysis of 25 years of data from an in vivo canine model of sudden cardiac death: Implications for future anti-arrhythmic drug development. Pharmacology & Therapeutics, 111(3), 808-835. doi:10.1016/j.pharmthera.2006.01.002Dor-Haim, H., Berenfeld, O., Horowitz, M., Lotan, C., & Swissa, M. (2013). Reduced Ventricular Arrhythmogeneity and Increased Electrical Complexity in Normal Exercised Rats. PLoS ONE, 8(6), e66658. doi:10.1371/journal.pone.0066658Hamer, M., & Stamatakis, E. (2008). Physical Activity and Cardiovascular Disease: Directions for Future Research. The Open Sports Sciences Journal, 1(1), 1-2. doi:10.2174/1875399x00801010001Powers, S. K., Smuder, A. J., Kavazis, A. N., & Quindry, J. C. (2014). Mechanisms of Exercise-Induced Cardioprotection. Physiology, 29(1), 27-38. doi:10.1152/physiol.00030.2013Hull, S. S., Vanoli, E., Adamson, P. B., Verrier, R. L., Foreman, R. D., & Schwartz, P. J. (1994). Exercise training confers anticipatory protection from sudden death during acute myocardial ischemia. Circulation, 89(2), 548-552. doi:10.1161/01.cir.89.2.548Hajnal, Á., Nagy, O., Litvai, Á., Papp, J., Parratt, J. R., & VĂ©gh, Á. (2005). Nitric oxide involvement in the delayed antiarrhythmic effect of treadmill exercise in dogs. Life Sciences, 77(16), 1960-1971. doi:10.1016/j.lfs.2005.02.015Such, L., Alberola, A. M., Such-Miquel, L., LĂłpez, L., Trapero, I., Pelechano, F., 
 Chorro, F. J. (2008). Effects of chronic exercise on myocardial refractoriness: a study on isolated rabbit heart. Acta Physiologica, 193(4), 331-339. doi:10.1111/j.1748-1716.2008.01851.xZarzoso, M., Such-Miquel, L., Parra, G., Brines-Ferrando, L., Such, L., Chorro, F. J., 
 Alberola, A. (2011). The training-induced changes on automatism, conduction and myocardial refractoriness are not mediated by parasympathetic postganglionic neurons activity. European Journal of Applied Physiology, 112(6), 2185-2193. doi:10.1007/s00421-011-2189-4Billman, G. E. (2009). Cardiac autonomic neural remodeling and susceptibility to sudden cardiac death: effect of endurance exercise training. American Journal of Physiology-Heart and Circulatory Physiology, 297(4), H1171-H1193. doi:10.1152/ajpheart.00534.2009HAN, J., & MOE, G. K. (1964). Nonuniform Recovery of Excitability in Ventricular Muscle. Circulation Research, 14(1), 44-60. doi:10.1161/01.res.14.1.44Beaumont, E., Salavatian, S., Southerland, E. M., Vinet, A., Jacquemet, V., Armour, J. A., & Ardell, J. L. (2013). Network interactions within the canine intrinsic cardiac nervous system: implications for reflex control of regional cardiac function. The Journal of Physiology, 591(18), 4515-4533. doi:10.1113/jphysiol.2013.259382Armour, J. A. (2008). Potential clinical relevance of the ‘little brain’ on the mammalian heart. Experimental Physiology, 93(2), 165-176. doi:10.1113/expphysiol.2007.041178Abramochkin, D. V., Nurullin, L. F., Borodinova, A. A., Tarasova, N. V., Sukhova, G. S., Nikolsky, E. E., & Rosenshtraukh, L. V. (2009). Non-quantal release of acetylcholine from parasympathetic nerve terminals in the right atrium of rats. Experimental Physiology, 95(2), 265-273. doi:10.1113/expphysiol.2009.050302CHORRO, F. J., CANOVES, J., GUERRERO, J., MAINAR, L., SANCHIS, J., SORIA, E., 
 LOPEZ-MERINO, V. (2000). Opposite Effects of Myocardial Stretch and Verapamil on the Complexity of the Ventricular Fibrillatory Pattern: An Experimental Study. Pacing and Clinical Electrophysiology, 23(11), 1594-1603. doi:10.1046/j.1460-9592.2000.01594.xSuch, L., Rodriguez, A., Alberola, A., Lopez, L., Ruiz, R., Artal, L., 
 Chorro, F. J. (2002). Intrinsic changes on automatism, conduction, and refractoriness by exercise in isolated rabbit heart. Journal of Applied Physiology, 92(1), 225-229. doi:10.1152/jappl.2002.92.1.225Duytschaever, M., Mast, F., Killian, M., Blaauw, Y., Wijffels, M., & Allessie, M. (2001). Methods for Determining the Refractory Period and Excitable Gap During Persistent Atrial Fibrillation in the Goat. Circulation, 104(8), 957-962. doi:10.1161/hc3401.093156Wijffels, M. C. E. F., Kirchhof, C. J. H. J., Dorland, R., & Allessie, M. A. (1995). Atrial Fibrillation Begets Atrial Fibrillation. Circulation, 92(7), 1954-1968. doi:10.1161/01.cir.92.7.1954Zaitsev, A. V., Berenfeld, O., Mironov, S. F., Jalife, J., & Pertsov, A. M. (2000). Distribution of Excitation Frequencies on the Epicardial and Endocardial Surfaces of Fibrillating Ventricular Wall of the Sheep Heart. Circulation Research, 86(4), 408-417. doi:10.1161/01.res.86.4.408Armour, J. A., Collier, K., Kember, G., & Ardell, J. L. (1998). Differential selectivity of cardiac neurons in separate intrathoracic autonomic ganglia. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 274(4), R939-R949. doi:10.1152/ajpregu.1998.274.4.r939Armour, J. A., & Hopkins, D. A. (1990). Activity of in vivo canine ventricular neurons. American Journal of Physiology-Heart and Circulatory Physiology, 258(2), H326-H336. doi:10.1152/ajpheart.1990.258.2.h326D’Souza, A., Bucchi, A., Johnsen, A. B., Logantha, S. J. R. J., Monfredi, O., Yanni, J., 
 Boyett, M. R. (2014). Exercise training reduces resting heart rate via downregulation of the funny channel HCN4. Nature Communications, 5(1). doi:10.1038/ncomms4775Sartiani, L., Romanelli, M., Mugelli, A., & Cerbai, E. (2015). Updates on HCN Channels in the Heart: Function, Dysfunction and Pharmacology. Current Drug Targets, 16(8), 868-876. doi:10.2174/1389450116666150531152047Herrmann, S., Layh, B., & Ludwig, A. (2011). Novel insights into the distribution of cardiac HCN channels: An expression study in the mouse heart. Journal of Molecular and Cellular Cardiology, 51(6), 997-1006. doi:10.1016/j.yjmcc.2011.09.005Welch, P. (1967). The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics, 15(2), 70-73. doi:10.1109/tau.1967.116190

    Effects of S-Nitrosoglutathione on Electrophysiological Manifestations of Mechanoelectric Feedback

    Full text link
    [EN] Electromechanical coupling studies have described the intervention of nitric oxide and S-nitrosylation processes in Ca2+ release induced by stretch, with heterogeneous findings. On the other hand, ion channel function activated by stretch is influenced by nitric oxide, and concentration-dependent biphasic effects upon several cellular functions have been described. The present study uses isolated and perfused rabbit hearts to investigate the changes in mechanoelectric feedback produced by two different concentrations of the nitric oxide carrier S-nitrosoglutathione. Epicardial multielectrodes were used to record myocardial activation at baseline and during and after left ventricular free wall stretch using an intraventricular device. Three experimental series were studied: (a) control (n=10); (b) S-nitrosoglutathione 10 mu M (n=11); and (c) S-nitrosoglutathione 50 mu M (n=11). The changes in ventricular fibrillation (VF) pattern induced by stretch were analyzed and compared. S-nitrosoglutathione 10 mu M did not modify VF at baseline, but attenuated acceleration of the arrhythmia (15.6 +/- 1.7 vs. 21.3 +/- 3.8Hz; p<0.0001) and reduction of percentile 5 of the activation intervals (42 +/- 3 vs. 38 +/- 4ms; p<0.05) induced by stretch. In contrast, at baseline using the 50 mu M concentration, percentile 5 was shortened (38 +/- 6 vs. 52 +/- 10ms; p<0.005) and the complexity index increased (1.77 +/- 0.18 vs. 1.27 +/- 0.13; p<0.0001). The greatest complexity indices (1.84 +/- 0.17; p<0.05) were obtained during stretch in this series. S-nitrosoglutathione 10 mu M attenuates the effects of mechanoelectric feedback, while at a concentration of 50 mu M the drug alters the baseline VF pattern and accentuates the increase in complexity of the arrhythmia induced by myocardial stretch.Carlos III Health Institute/FEDER funds (Spanish Ministry of Economy and Competitiveness): Grants FIS PI12/00407, PI15/01408, PIE15/00013, and RETIC “RIC” RD12/0042/0048. Generalitat Valenciana: Grant PROMETEO FASE II 2014/037.Such-Miquel, L.; Canto Serrano, ID.; Zarzoso Muñoz, M.; Brines-Ferrando, L.; Soler, C.; Parra-Giraldo, G.; Guill Ibåñez, A.... (2018). Effects of S-Nitrosoglutathione on Electrophysiological Manifestations of Mechanoelectric Feedback. Cardiovascular Toxicology. 18(6):520-529. https://doi.org/10.1007/s12012-018-9463-1S520529186Tamargo, J., Caballero, R., GĂłmez, R., & DelpĂłn, E. (2010). Cardiac electrophysiological effects of nitric oxide. Cardiovascular Research, 87, 593–600.Gonzalez, D. R., Treuer, A., Sun, Q. A., Stamler, J. S., & Hare, J. M. (2009). S-nitrosylation of cardiac ion channels. Journal of Cardiovascular Pharmacology, 54, 188–195.Treuer, A. V., & Gonzalez, D. R. (2015). Nitric oxide synthases, S-nitrosylation and cardiovascular health: From molecular mechanisms to therapeutic opportunities. Molecular Medicine Reports, 11, 1555–1565.Beigi, F., Gonzalez, D. R., Minhas, K. M., Sun, Q. A., Foster, M. W., Khan, S. A., Treuer, A. V., Dulce, R. A., Harrison, R. W., Saraiva, R. M., Premer, C., Schulman, I. H., Stamler, J. S., & Hare, J. M. (2012). Dynamic denitrosylation via S-nitrosoglutathione reductase regulates cardiovascular function. Proceedings of the National Academy of Sciences of the United States of America, 109, 4314–4319.Broniowska, K. A., Diers, A. R., & Hogg, N. (2013). S-nitrosoglutathione. Biochimica et Biophysica Acta, 1830, 3173–3181.Zaman, K., Palmer, L. A., Doctor, A., Hunt, J. F., & Gaston, B. (2004). Concentration-dependent effects of endogenous S-nitrosoglutathione on gene regulation by specificity proteins Sp3 and Sp1. The Biochemical Journal, 380, 67–74.Janse, M. J., Coronel, R., Wilms-Schopman, F. J. G., & de Groot, J. R. (2003). Mechanical effects on arrhythmogenesis: From pipette to patient. Progress in Biophysics and Molecular Biology, 82, 187–195.Quinn, T. A., & Kohl, P. (2016). Rabbit models of cardiac mechano-electric and mechano-mechanical coupling. Progress in Biophysics and Molecular Biology, 121, 110–122.Vila-Petroff, M., Kim, S. H., Pepe, S., Dessy, C., MarbĂĄn, E., Balligand, J. L., & Sollott, S. J. (2001). Endogenous nitric oxide mechanisms mediate the stretch-dependency of Ca2+ release in cardiomyocytes. Nature Cell Biology, 3, 867–873.Leite-Moreira, A. M., Neves, J. S., Almeida-Coelho, J., Neiva-Sousa, M., & Leite-Moreira, A. F. (2016). On the study of the role of NO-mediated pathways in the myocardial response to acute stretch. Nitric Oxide: Biology and Chemistry, 53, 1–3.Peyronnet, R., Nerbonne, J. M., & Kohl, P. (2016). Cardiac mechano-gated ion channels and arrhythmias. Circulation Research 118, 311–329.Fischmeister, R., Castro, L., Abi-Gerges, A., Rochais, F., & Vandecasteele, G. (2005). Species- and tissue-dependent effects of NO and cyclic GMP on cardiac ion channels. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 142, 136–143.Kazanski, V. E., Kamkin, A. G., Makarenko, E. Y., Lysenko, N. N., Sutiagin, P. V., Bo, T., & Kiseleva, I. S. (2010). Role of nitric oxide in activity control of mechanically gated ionic channels in cardiomyocytes: NO-donor study. Bulletin of Experimental Biology and Medicine, 150, 1–5.Dyachenko, V., Rueckschloss, U., & Isenberg, G. (2009). Modulation of cardiac mechanosensitive ion channels involves superoxide, nitric oxide and peroxynitrite. Cell Calcium, 45, 55–64.Chorro, F. J., Trapero, I., Guerrero, J., Such, L. M., Canoves, J., Mainar, L., Ferrero, A., Blasco, E., Sanchis, J., Millet, J., Tormos, A., BodĂ­, V., & Alberola, A. (2005). Modification of ventricular fibrillation activation patterns induced by local stretching. Journal of Cardiovascular Electrophysiology, 16, 1087–1096.Chorro, F. J., Trapero, I., Such-Miquel, L., Pelechano, F., Mainar, L., CĂĄnoves, J., Tormos, A., Alberola, A., Hove-Madsen, L., Cinca, J., & Such, L. (2009). Pharmacological modifications of the stretch-induced effects on ventricular fibrillation in perfused rabbit-hearts. American Journal of Physiology Heart and Circulatory Physiology, 297, H1860–H1869.Brines, L., Such-Miquel, L., Gallego, D., Trapero, I., Del Canto, I., Zarzoso, M., Soler, C., Pelechano, F., CĂĄnoves, J., Alberola, A., Such, L., & Chorro, F. J. (2012). Modifications of mechanoelectric feedback induced by 2,3-butanedione monoxime and blebbistatin in Langendorff-perfused rabbit hearts. Acta Physiologica, 206, 29–41.Chorro, F. J., del Canto, I., Brines, L., Such-Miquel, L., Calvo, C., Soler, C., Zarzoso, M., Trapero, I., Tormos, Á, & Such, L. (2015). Experimental study of the effects of EIPA, losartan and BQ-123 on electrophysiological changes induced by myocardial stretch. Revista Espanola de Cardiologia, 68, 1101–1110.Chorro, F. J., del Canto, I., Brines, L., Such-Miquel, L., Calvo, C., Soler, C., Parra, G., Zarzoso, M., Trapero, I., Tormos, A., Alberola, A., & Such, L. (2015). Ranolazine attenuates the electrophysiological effects of myocardial stretch in Langendorff-perfused rabbit hearts. Cardiovascular Drugs and Therapy, 29, 231–241.Kelly, R. A., Balligand, J. L., & Smith, T. W. (1996). Nitric oxide and cardiac function. Circulation Research, 79, 363–380.Kojda, G., & Kottenberg, K. (1999). Regulation of basal myocardial function by NO. Cardiovascular Research, 41, 514–523.Massion, P. B., Feron, O., Dessy, C., & Balligand, J. L. (2003). Nitric oxide and cardiac function: Ten years after, and continuing. Circulation Research, 93, 388–398.Shah, A. M., & MacCarthy, P. A. (2000). Paracrine and autocrine effects of nitric oxide on myocardial function. Pharmacology & Therapeutics, 86, 49–86.Zhang, Y. H., Dingle, L., Hall, R., & Casadei, B. (2009). The role of nitric oxide and reactive oxygen species in the positive inotropic response to mechanical stretch in the mammalian myocardium. Biochimica et Biophysica Acta, 1787, 811–817.Chorro, F. J., Ibañez-CatalĂĄ, X., Trapero, I., Such-Miquel, L., Pelechano, F., CĂĄnoves, J., Mainar, L., Tormos, A., CerdĂĄ, J. M., Alberola, A., & Such, L. (2013). Ventricular fibrillation conduction through an isthmus of preserved myocardium between radiofrequency lesions. Pacing and Clinical Electrophysiology, 36, 286–298.Gaston, B., Reilly, J., Drazen, J. M., Fackler, J., Ramdev, P., Arnelle, D., Mullins, M. E., Sugarbaker, D. J., Chee, C., Singel, D. J., Loscalzo, J., & Stamler, J. (1993). Endogenous nitrogen oxides and bronchodilator S-nitrosothiols in human airways. Proceedings of the National Academy of Sciences of the United States of America, 90, 10957–10961.Radomski, M. W., Rees, D. D., Dutra, A., & Moncada, S. (1992). S-nitroso-glutathione inhibits platelet activation in vitro and in vivo. British Journal of Pharmacology, 107, 745–749.Zaman, K., McPherson, M., Vaughan, J., Hunt, J., Mendes, F., Gaston, B., & Palmer, L. A. (2001). S-nitrosoglutathione increases cystic fibrosis transmembrane regulator maturation. Biochemical and Biophysical Research Communications, 284, 65–70.Zaman, K., Carraro, S., Doherty, J., Henderson, E. M., Lendermon, E., Liu, L., Verghese, G., Zigler, M., Ross, M., Park, M., Palmer, L. A., Doctor, A., Stamler, J. S., & Gaston, B. (2006). S-nitrosylating agents: A novel class of compounds that increase cystic fibrosis transmembrane conductance regulator expression and maturation in epithelial cells. Molecular Pharmacology, 70, 1435–1442.Kaposzta, Z., Baskerville, P. A., Madge, D., Fraser, S., Martin, J. F., & Markus, H. S. (2001). L-arginine and S-nitrosoglutathione reduce embolization in humans. Circulation, 103, 2371–2375.Kaposzta, Z., Clifton, A., Molloy, J., Martin, J. F., & Markus, H. S. (2002). S-nitrosoglutathione reduces asymptomatic embolization after carotid angioplasty. Circulation, 106, 2057–3062.Everett, T. R., Wilkinson, I. B., Mahendru, A. A., McEniery, C. M., Garner, S., Goodall, A. H., & Lees, C. C. (2014). S-nitrosoglutathione improves haemodynamics in early-onset pre-eclampsia. British Journal of Clinical Pharmacology, 78, 660–669.Everett, T. R., Wilkinson, I. B., & Lees, C. C. (2017). Pre-eclampsia: The potential of GSNO reductase inhibitors. Current Hypertension Reports, 19, 1–7.Oppenheim, A., & Schafer, R. (1975). Digital signal processing. Englewood Cliffs: Prentice Hall.Such-Miquel, L., Chorro, F. J., Guerrero, J., Trapero, I., Brines, L., Zarzoso, M., Parra, G., Soler, C., del Canto, I., Alberola, A., & Such, L. (2013). Evaluation of the complexity of myocardial activation during ventricular fibrillation. An experimental study. Revista Espanola de Cardiologia, 66, 177–184.Erickson, J. R., Nichols, C. B., Uchinoumi, H., Stein, M., Bossuyt, J., & Bers, D. M. (2015). S-nitrosylation induces both autonomous activation and inhibition of calcium/calmodulin-dependent protein kinase IIÎŽ. Journal of Biological Chemistry, 290, 25646–25656.GĂłmez, R., Caballero, R., Barana, A., AmorĂłs, I., Calvo, E., LĂłpez, J. A., Klein, H., Vaquero, M., Osuna, L., Atienza, F., Almendral, J., Pinto, A., Tamargo, J., & DelpĂłn, E. (2009). Nitric oxide increases cardiac IK1 by nitrosylation of cysteine 76 of Kir2.1 channels. Circulation Research, 105, 383–392.Sun, J., Yamaguchi, N., Xu, L., Eu, J. P., Stamler, J. S., & Meissner, G. (2008). Regulation of the cardiac muscle ryanodine receptor by O2 tension and S-nitrosoglutathione. Biochemistry, 47, 13985–13990.Xu, L., Eu, J. P., Meissner, G., & Stamler, J. S. (1998). Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science, 279, 234–237.Zahradnikova, A., Minarovic, I., Venema, R. C., & Meszaros, L. G. (1997). Inactivation of the cardiac ryanodine receptor calcium release channel by nitric oxide. Cell Calcium, 22, 447–454.Kirstein, M., Rivet-Bastide, M., Hatem, S., BĂ©nardeau, A., Mercadier, J. J., & Fischmeister, R. (1995). Nitric Oxide regulates the calcium current in isolated human atrial myocytes. Journal of Clinical Investigation, 95, 794–802.Rivet-Bastide, M., Vandecasteele, G., Hatem, S., Verde, I., BĂ©nardeau, A., Mercadier, J. J., & Fischmeister, R. (1997). cGMP-stimulated cyclic nucleotide phosphodiesterase regulates the basal calcium current in human atrial myocytes. Journal of Clinical Investigation, 99, 2710–2718.Lim, G., Venetucci, L., Eisner, D. A., & Casadei, B. (2008). Does nitric oxide modulate cardiac ryanodine receptor function? Implications for excitation–contraction coupling. Cardiovascular Research, 77, 256–264.Ling, L., Hui, Y., Bing, G., Xin, H., Jing, W., & Jin-Cheng, L. (2015). Nitric oxide donor, NOC7, reveals dose dependently and cGMP pathway independently biphasic effects on contractile force of isolated rat heart after global ischemia. International Journal of Clinical and Experimental Pathology, 8, 3843–3849.Cingolani, H. E., Ennis, I. L., Aiello, E. A., & PĂ©rez, N. G. (2011). Role of autocrine/paracrine mechanisms in response to myocardial strain. Pflugers Archiv European Journal of Physiology, 462, 29–38.Youm, J. B., Han, J., Kim, N., Zhang, Y. H., Kim, E., Joo, H., Leem, C. H., Kim, S. J., Cha, K. A., Earm, Y. E., & Leem, C. H. (2006). Role of stretch-activated channels on the stretch-induced changes of rat atrial myocytes. Progress in Biophysics and Molecular Biology, 90, 186–206.von Lewinski, D., Stumme, B., Maier, L. S., Luers, C., Bers, D. M., & Pieske, B. (2003). Stretch-dependent slow force response in isolated rabbit myocardium is Na+ dependent. Cardiovascular Research, 57, 1052–1061.Calaghan, S. C., Belus, A., & White, E. (2003). Do stretch-induced changes in intracellular calcium modify the electrical activity of cardiac muscle? Progress in Biophysics and Molecular Biology, 82, 91–95.Zhang, Y. H., Dingle, L., Hall, R., & Casadei, B. (2009). The role of nitric oxide and reactive oxygen species in the positive inotropic response to mechanical stretch in the mammalian myocardium. Biochimica Biophysica Acta, 1787, 811–817.Sag, C. M., Wagner, S., & Maier, L. S. (2013). Role of oxidants on calcium and sodium movement in healthy and diseased cardiac myocytes. Free Radical Biology and Medicine, 63, 338–349.Janvier, N. C., & Boyett, M. R. (1996). The role of Na-Ca exchange current in the cardiac action potential. Cardiovascular Research, 32, 69–84.KovĂĄcs, M., Kiss, A., Gönczi, M., Miskolczi, G., SeprĂ©nyl, G., Kaszaki, J., Kohr, M. J., Murphy, E., & Vegh, A. (2015). Effect of sodium nitrite on ischaemia and reperfusion-induced arrhythmias in anaesthetized dogs: Is protein S-nitrosylation involved? PLoS ONE, 10(4), e0122243 (eCollection 2015). https://doi.org/10.1371/journal.pone.0122243
    corecore