1,405 research outputs found

    Investigation of a SiC/Ti-24Al-11Nb composite

    Get PDF
    A summary of ongoing research on the characterization of a continuous fiber reinforced SiC/Ti-24Al-11Nb (at percent) composite is presented. The powder metallurgy fabrication technique is described as are the nondestructive evaluation results of the as-fabricated composite plates. Tensile properties of the SiC fiber, the matrix material, and the 0-deg SiC/Ti-24Al-11Nb composite (fibers oriented unidirectionally, parallel to the loading axis) from room temperature to 1100 C are presented and discussed with regard to the resultant fractography. The as-fabricated fiber-matrix interface has been examined by scanning transmission electron microscopy and the compounds present in the reaction zone have been identified. Fiber-matrix interaction and stability of the matrix near the fiber is characterized at 815, 985, and 1200 C from 1 to 500 hr. Measurements of the fiber-matrix reaction, the loss of C-rich coating from the surface of the SiC fiber, and the growth of the Beta depleted zone in the matrix adjacent to the fiber are presented. These data and the difference in coefficient of thermal expansion between the fiber and the matrix are discussed in terms of their likely effects on mechanical properties

    Cytometric analysis, genetic manipulation and antibiotic selection of the snail embryonic cell line Bge from Biomphalaria glabrata, the intermediate host of Schistosoma mansoni.

    Get PDF
    The invertebrate cell line, Bge, from embryos of the snail Biomphalaria glabrata, remains to date the only established cell line from any species of the Phylum Mollusca. Since its establishment in 1976 by Eder Hansen, few studies have focused on profiling its cytometrics, growth characteristics or sensitivity to xenobiotics. Bge cells are reputed to be challenging to propagate and maintain. Therefore, even though this cell line is a noteworthy resource, it has not been studied widely. With growing interest in functional genomics, including genetic transformation, to elucidate molecular aspects of the snail intermediate hosts responsible for transmission of schistosomiasis, and aiming to enhance the convenience of maintenance of this molluscan cell line, we deployed the xCELLigene real time approach to study Bge cells. Doubling times for three isolates of Bge, termed CB, SL and UK, were longer than for mammalian cell lines - longer than 40 h in complete Bge medium supplemented with 7% fetal bovine serum at 25 °C, ranging from ∼42 h to ∼157 h when 40,000 cells were seeded. To assess the potential of the cells for genetic transformation, antibiotic selection was explored. Bge cells were sensitive to the aminonucleoside antibiotic puromycin (from Streptomyces alboniger) from 5 μg/ml to 200 ng/ml, displaying a half maximal inhibitory concentration (IC50) of ∼1.91 μg/ml. Sensitivity to puromycin, and a relatively quick kill time (<48 h in 5 μg/ml) facilitated use of this antibiotic, together with the cognate resistance gene (puromycin N-acetyl-transferase) for selection of Bge cells transformed with the PAC gene (puroR). Bge cells transfected with a plasmid encoding puroR were partially rescued when cultured in the presence of 5 μg/ml of puromycin. These findings pave the way for the development of functional genomic tools applied to the host-parasite interaction during schistosomiasis and neglected tropical trematodiases at large

    A data driven approach to mapping urban neighbourhoods

    Get PDF
    Neighbourhoods have been described by the UK Secretary of State for Communities and Local Government as the “building blocks of public service society”. Despite this, difficulties in data collection combined with the concept’s subjective nature have left most countries lacking official neighbourhood definitions. This issue has implications not only for policy, but for the field of computational social science as a whole (with many studies being forced to use administrative units as proxies despite the fact that these bear little connection to resident perceptions of social boundaries). In this paper we illustrate that the mass linguistic datasets now available on the internet need only be combined with relatively simple linguistic computational models to produce definitions that are not only probabilistic and dynamic, but do not require a priori knowledge of neighbourhood names

    An Oxidation-Resistant Coating Alloy for Gamma Titanium Aluminides

    Get PDF
    Titanium aluminides based on the g-phase (TiAl) offer the potential for component weight savings of up to 50 percent over conventional superalloys in 600 to 850 C aerospace applications. Extensive development efforts over the past 10 years have led to the identification of "engineering" gamma-alloys, which offer a balance of room-temperature mechanical properties and high-temperature strength retention. The gamma class of titanium aluminides also offers oxidation and interstitial (oxygen and nitrogen) embrittlement resistance superior to that of the alpha(sub 2) (Ti3Al) and orthorhombic (Ti2AlNb) classes of titanium aluminides. However, environmental durability is still a concern, especially at temperatures above 750 to 800 C. Recent work at the NASA Lewis Research Center led to the development of an oxidation-resistant coating alloy that shows great promise for the protection of gamma titanium aluminides

    A data driven approach to mapping urban neighbourhoods

    Full text link

    Oxidation Resistant Ti-Al-Fe Diffusion Barrier for FeCrAlY Coatings on Titanium Aluminides

    Get PDF
    A diffusion barrier to help protect titanium aluminide alloys, including the coated alloys of the TiAl gamma + Ti3Al (alpha2) class, from oxidative attack and interstitial embrittlement at temperatures up to at least 1000 C is disclosed. The coating may comprise FeCrAlX alloys. The diffusion barrier comprises titanium, aluminum, and iron in the following approximate atomic percent: Ti-(50-55)Al-(9-20)Fe. This alloy is also suitable as an oxidative or structural coating for such substrates
    corecore