164 research outputs found

    Symptomatic treatment of children with anti-NMDAR encephalitis.

    Get PDF
    Abstract AIM: We performed the first study on the perceived benefit and adverse effects of symptomatic management in children with anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis. METHOD: A retrospective chart review was undertaken at two tertiary paediatric hospitals in Australia and New Zealand. We included 27 children (12 males, 15 females; mean age at admission 7y 1mo) with anti-NMDAR antibodies in serum or cerebrospinal fluid with a typical clinical syndrome. RESULTS: Only two out of 27 patients were white, whereas 16 out of 27 patients were from the Pacific Islands/New Zealand Maori. The mean duration of admission was 69 days (10-224d) and 48% of patients (13/27) needed treatment in an intensive care setting. A mean of eight medications per patient was used for symptomatic management. Symptoms treated were agitation (n=25), seizures (n=24), movement disorders (n=23), sleep disruption (n=17), psychiatric symptoms (n=10), and dysautonomia (n=four). The medications used included five different benzodiazepines (n=25), seven anticonvulsants (n=25), eight sedatives and sleep medications (n=23), five antipsychotics (n=12), and five medications for movement disorders (n=10). Sedative and sleep medications other than benzodiazepines were the most effective, with a mean benefit of 67.4% per medication and a mean adverse effect-benefit ratio of 0.04 per medication. Antipsychotic drugs were used for a short duration (median 9d), and had the poorest mean benefit per medication of 35.4% and an adverse effect-benefit ratio of 2.0 per medication. INTERPRETATION: Long-acting benzodiazepines, anticonvulsants, and clonidine can treat multiple symptoms. Patients with anti-NMDAR encephalitis appear vulnerable to antipsychotic-related adverse effects. Pacific Islanders appear to have a vulnerability to anti-NMDAR encephalitis in our region

    Importance of a Thymus Dysfunction in the Pathophysiology of Type 1 Diabetes

    Full text link
    peer reviewedThe autoimmune nature of the diabetogenic process and the major contribution of T lymphocytes stand now beyond any doubt. However, despite the identification of the three major type 1-diabetes-related autoantigens (insulin, GAD65 and phosphatase IA-2), the origin of this immune dysregulation still remains unknown. More and more evidence supports a thymic dysfunction in the establishment of central self-tolerance to the insulin family as a crucial factor in the development of the autoimmune response selective of pancreatic insulin-secreting islet beta cells. All the genes of the insulin family (INS, IGF1 and IGF2) are expressed in the thymus network. However, IGF-2 is the dominant member of this family first encountered by T cells in the thymus, and only IGFs control early T-cell differentiation. IGF2 transcription is defective in the thymus in one animal model of type 1 diabetes, the Bio-Breeding (BB) rat. The sequence B9-23, one dominant autoantigen of insulin, and the homologous sequence B11-25 derived from IGF-2 exibit the same affinity and fully compete for binding to DQ8, one class-II major histocompatibility complex (MHC-II) conferring major genetic susceptibility to type 1 diabetes. Compared to insulin B9-23, the presentation of IGF-2 B11-25 to peripheral mononuclear cells (PBMCs) isolated from type 1 diabetic DQ8+ adolescents elicits a regulatory/tolerogenic cytokine profile (*IL-10, *IL-10/IFN-g, *IL-4). Thus, administration of IGF-2 derived self-antigen(s) might constitute a novel form of vaccine/immunotherapy combining both an antagonism for the site of presentation of a susceptible MHC allele, as well as a downstream tolerogenic/regulatory immune response

    Rituximab monitoring and redosing in pediatric neuromyelitis optica spectrum disorder.

    Get PDF
    Abstract OBJECTIVE: To study rituximab in pediatric neuromyelitis optica (NMO)/NMO spectrum disorders (NMOSD) and the relationship between rituximab, B cell repopulation, and relapses in order to improve rituximab monitoring and redosing. METHODS: Multicenter retrospective study of 16 children with NMO/NMOSD receiving 652 rituximab courses. According to CD19 counts, events during rituximab were categorized as "repopulation," "depletion," or "depletion failure" relapses (repopulation threshold CD19 6510 7 10(6) cells/L). RESULTS: The 16 patients (14 girls; mean age 9.6 years, range 1.8-15.3) had a mean of 6.1 events (range 1-11) during a mean follow-up of 6.1 years (range 1.6-13.6) and received a total of 76 rituximab courses (mean 4.7, range 2-9) in 42.6-year cohort treatment. Before rituximab, 62.5% had received azathioprine, mycophenolate mofetil, or cyclophosphamide. Mean time from rituximab to last documented B cell depletion and first repopulation was 4.5 and 6.8 months, respectively, with large interpatient variability. Earliest repopulations occurred with the lowest doses. Significant reduction between pre- and post-rituximab annualized relapse rate (ARR) was observed (p = 0.003). During rituximab, 6 patients were relapse-free, although 21 relapses occurred in 10 patients, including 13 "repopulation," 3 "depletion," and 4 "depletion failure" relapses. Of the 13 "repopulation" relapses, 4 had CD19 10-50 7 10(6) cells/L, 10 had inadequate monitoring ( 641 CD19 in the 4 months before relapses), and 5 had delayed redosing after repopulation detection. CONCLUSION: Rituximab is effective in relapse prevention, but B cell repopulation creates a risk of relapse. Redosing before B cell repopulation could reduce the relapse risk further. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that rituximab significantly reduces ARR in pediatric NMO/NMOSD. This study also demonstrates a relationship between B cell repopulation and relapses

    Ribosome*RelA structures reveal the mechanism of stringent response activation

    Get PDF
    Stringent response is a conserved bacterial stress response underlying virulence and antibiotic resistance. RelA/SpoT-homolog proteins synthesize transcriptional modulators (p)ppGpp, allowing bacteria to adapt to stress. RelA is activated during amino-acid starvation, when cognate deacyl-tRNA binds to the ribosomal A (aminoacyl-tRNA) site. We report four cryo-EM structures of E. coli RelA bound to the 70S ribosome, in the absence and presence of deacyl-tRNA accommodating in the 30S A site. The boomerang-shaped RelA with a wingspan of more than 100 A wraps around the A/R (30S A-site/RelA-bound) tRNA. The CCA end of the A/R tRNA pins the central TGS domain against the 30S subunit, presenting the (p)ppGpp-synthetase domain near the 30S spur. The ribosome and A/R tRNA are captured in three conformations, revealing hitherto elusive states of tRNA engagement with the ribosomal decoding center. Decoding-center rearrangements are coupled with the step-wise 30S-subunit \u27closure\u27, providing insights into the dynamics of high-fidelity tRNA decoding

    Structures of Yeast 80S Ribosome-tRNA Complexes in the Rotated and Nonrotated Conformations

    Get PDF
    SummaryThe structural understanding of eukaryotic translation lags behind that of translation on bacterial ribosomes. Here, we present two subnanometer resolution structures of S. cerevisiae 80S ribosome complexes formed with either one or two tRNAs and bound in response to an mRNA fragment containing the Kozak consensus sequence. The ribosomes adopt two globally different conformations that are related to each other by the rotation of the small subunit. Comparison with bacterial ribosome complexes reveals that the global structures and modes of intersubunit rotation of the yeast ribosome differ significantly from those in the bacterial counterpart, most notably in the regions involving the tRNA, small ribosomal subunit, and conserved helix 69 of the large ribosomal subunit. The structures provide insight into ribosome dynamics implicated in tRNA translocation and help elucidate the role of the Kozak fragment in positioning an open reading frame during translation initiation in eukaryotes

    Patients with treated indolent lymphomas immunized with BNT162b2 have reduced anti-spike neutralizing IgG to SARS-CoV-2 variants, but preserved antigen-specific T cell responses

    Get PDF
    Patients with indolent lymphoma undertaking recurrent or continuous B cell suppression are at risk of severe COVID-19. Patients and healthy controls (HC; N = 13) received two doses of BNT162b2: follicular lymphoma (FL; N = 35) who were treatment naïve (TN; N = 11) or received immunochemotherapy (ICT; N = 23) and Waldenström's macroglobulinemia (WM; N = 37) including TN (N = 9), ICT (N = 14), or treated with Bruton's tyrosine kinase inhibitors (BTKi; N = 12). Anti-spike immunoglobulin G (IgG) was determined by a high-sensitivity flow-cytometric assay, in addition to live-virus neutralization. Antigen-specific T cells were identified by coexpression of CD69/CD137 and CD25/CD134 on T cells. A subgroup (N = 29) were assessed for third mRNA vaccine response, including omicron neutralization. One month after second BNT162b2, median anti-spike IgG mean fluorescence intensity (MFI) in FL ICT patients (9977) was 25-fold lower than TN (245 898) and HC (228 255, p =.0002 for both). Anti-spike IgG correlated with lymphocyte count (r =.63; p =.002), and time from treatment (r =.56; p =.007), on univariate analysis, but only with lymphocyte count on multivariate analysis (p =.03). In the WM cohort, median anti-spike IgG MFI in BTKi patients (39 039) was reduced compared to TN (220 645, p =.0008) and HC (p <.0001). Anti-spike IgG correlated with neutralization of the delta variant (r =.62, p <.0001). Median neutralization titer for WM BTKi (0) was lower than HC (40, p <.0001) for early-clade and delta. All cohorts had functional T cell responses. Median anti-spike IgG decreased 4-fold from second to third dose (p =.004). Only 5 of 29 poor initial responders assessed after third vaccination demonstrated seroconversion and improvement in neutralization activity, including to the omicron variant

    Clinical course, therapeutic responses and outcomes in relapsing MOG antibody-associated demyelination.

    Get PDF
    Abstract OBJECTIVE: We characterised the clinical course, treatment and outcomes in 59 patients with relapsing myelin oligodendrocyte glycoprotein (MOG) antibody-associated demyelination. METHODS: We evaluated clinical phenotypes, annualised relapse rates (ARR) prior and on immunotherapy and Expanded Disability Status Scale (EDSS), in 218 demyelinating episodes from 33 paediatric and 26 adult patients. RESULTS: The most common initial presentation in the cohort was optic neuritis (ON) in 54% (bilateral (BON) 32%, unilateral (UON) 22%), followed by acute disseminated encephalomyelitis (ADEM) (20%), which occurred exclusively in children. ON was the dominant phenotype (UON 35%, BON 19%) of all clinical episodes. 109/226 (48%) MRIs had no brain lesions. Patients were steroid responsive, but 70% of episodes treated with oral prednisone relapsed, particularly at doses <10\u2009mg daily or within 2 months of cessation. Immunotherapy, including maintenance prednisone (P=0.0004), intravenous immunoglobulin, rituximab and mycophenolate, all reduced median ARRs on-treatment. Treatment failure rates were lower in patients on maintenance steroids (5%) compared with non-steroidal maintenance immunotherapy (38%) (P=0.016). 58% of patients experienced residual disability (average follow-up 61 months, visual loss in 24%). Patients with ON were less likely to have sustained disability defined by a final EDSS of 652 (OR 0.15, P=0.032), while those who had any myelitis were more likely to have sustained residual deficits (OR 3.56, P=0.077). CONCLUSION: Relapsing MOG antibody-associated demyelination is strongly associated with ON across all age groups and ADEM in children. Patients are highly responsive to steroids, but vulnerable to relapse on steroid reduction and cessation

    SARS-CoV-2 neutralizing antibodies: Longevity, breadth, and evasion by emerging viral variants.

    Full text link
    The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) antibody neutralization response and its evasion by emerging viral variants and variant of concern (VOC) are unknown, but critical to understand reinfection risk and breakthrough infection following vaccination. Antibody immunoreactivity against SARS-CoV-2 antigens and Spike variants, inhibition of Spike-driven virus-cell fusion, and infectious SARS-CoV-2 neutralization were characterized in 807 serial samples from 233 reverse transcription polymerase chain reaction (RT-PCR)-confirmed Coronavirus Disease 2019 (COVID-19) individuals with detailed demographics and followed up to 7 months. A broad and sustained polyantigenic immunoreactivity against SARS-CoV-2 Spike, Membrane, and Nucleocapsid proteins, along with high viral neutralization, was associated with COVID-19 severity. A subgroup of "high responders" maintained high neutralizing responses over time, representing ideal convalescent plasma donors. Antibodies generated against SARS-CoV-2 during the first COVID-19 wave had reduced immunoreactivity and neutralization potency to emerging Spike variants and VOC. Accurate monitoring of SARS-CoV-2 antibody responses would be essential for selection of optimal responders and vaccine monitoring and design

    Maternal autoimmunity and inflammation are associated with childhood tics and obsessive-compulsive disorder: Transcriptomic data show common enriched innate immune pathways.

    Get PDF
    Although genetic variation is a major risk factor of neurodevelopmental disorders, environmental factors during pregnancy and early life are also important in disease expression. Animal models demonstrate that maternal inflammation causes fetal neuroinflammation and neurodevelopmental deficits, and brain transcriptomics of neurodevelopmental disorders in humans show upregulated differentially expressed genes are enriched in immune pathways. We prospectively recruited 200 sequentially referred children with tic disorders/obsessive-compulsive disorder (OCD), 100 autoimmune neurological controls, and 100 age-matched healthy controls. A structured interview captured the maternal and family history of autoimmune disease and other pro-inflammatory states. Maternal blood and published Tourette brain transcriptomes were analysed for overlapping enriched pathways. Mothers of children with tics/OCD had a higher rate of autoimmune disease compared with mothers of children with autoimmune neurological conditions (p = 0.054), and mothers of healthy controls (p = 0.0004). Autoimmunity was similarly elevated in first- and second-degree maternal relatives of children with tics/OCD (p 0.0001 and p = 0.014 respectively). Other pro-inflammatory states were also more common in mothers of children with tics/OCD than controls (p 0.0001). Upregulated differentially expressed genes in maternal autoimmune disease and Tourette brain transcriptomes were commonly enriched in innate immune processes. Pro-inflammatory states, including autoimmune disease, are more common in the mothers and families of children with tics/OCD. Exploratory transcriptome analysis indicates innate immune signalling may link maternal inflammation and childhood tics/OCD. Targeting inflammation may represent preventative strategies in pregnancy and treatment opportunities for children with neurodevelopmental disorders

    A Sensitive Assay for Virus Discovery in Respiratory Clinical Samples

    Get PDF
    In 5–40% of respiratory infections in children, the diagnostics remain negative, suggesting that the patients might be infected with a yet unknown pathogen. Virus discovery cDNA-AFLP (VIDISCA) is a virus discovery method based on recognition of restriction enzyme cleavage sites, ligation of adaptors and subsequent amplification by PCR. However, direct discovery of unknown pathogens in nasopharyngeal swabs is difficult due to the high concentration of ribosomal RNA (rRNA) that acts as competitor. In the current study we optimized VIDISCA by adjusting the reverse transcription enzymes and decreasing rRNA amplification in the reverse transcription, using hexamer oligonucleotides that do not anneal to rRNA. Residual cDNA synthesis on rRNA templates was further reduced with oligonucleotides that anneal to rRNA but can not be extended due to 3′-dideoxy-C6-modification. With these modifications >90% reduction of rRNA amplification was established. Further improvement of the VIDISCA sensitivity was obtained by high throughput sequencing (VIDISCA-454). Eighteen nasopharyngeal swabs were analysed, all containing known respiratory viruses. We could identify the proper virus in the majority of samples tested (11/18). The median load in the VIDISCA-454 positive samples was 7.2 E5 viral genome copies/ml (ranging from 1.4 E3–7.7 E6). Our results show that optimization of VIDISCA and subsequent high-throughput-sequencing enhances sensitivity drastically and provides the opportunity to perform virus discovery directly in patient material
    • …
    corecore