61 research outputs found

    Exploiting Plant Volatile Organic Compounds (VOCs) in Agriculture to Improve Sustainable Defense Strategies and Productivity of Crops

    Get PDF
    There is an urgent need for new sustainable solutions to support agriculture in facing current environmental challenges. In particular, intensification of productivity and food security needs require sustainable exploitation of natural resources and metabolites. Here, we bring the attention to the agronomic potential of volatile organic compounds (VOCs) emitted from leaves, as a natural and eco-friendly solution to defend plants from stresses and to enhance crop production. To date, application of VOCs is often limited to fight herbivores. Here we argue that potential applications of VOCs are much wider, as they can also protect from pathogens and environmental stresses. VOCs prime plant’s defense mechanisms for an enhanced resistance/tolerance to the upcoming stress, quench reactive oxygen species (ROS), have potent antimicrobial as well as allelopathic effects, and might be important in regulating plant growth, development, and senescence through interactions with plant hormones. Current limits and drawbacks that may hamper the use of VOCs in open field are analyzed, and solutions for a better exploitation of VOCs in future sustainable agriculture are envisioned

    Carbonyl sulfide (COS) as a tracer for canopy photosynthesis, transpiration and stomatal conductance: potential and limitations

    Get PDF
    The theoretical basis for the link between the leaf exchange of carbonyl sulfide (COS), carbon dioxide (CO2) and water vapour (H2O) and the assumptions that need to be made in order to use COS as a tracer for canopy net photosynthesis, transpiration and stomatal conductance, are reviewed. The ratios of COS to CO2 and H2O deposition velocities used to this end are shown to vary with the ratio of the internal to ambient CO2 and H2O mole fractions and the relative limitations by boundary layer, stomatal and internal conductance for COS. It is suggested that these deposition velocity ratios exhibit considerable variability, a finding that challenges current parameterizations, which treat these as vegetation-specific constants. COS is shown to represent a better tracer for CO2 than H2O. Using COS as a tracer for stomatal conductance is hampered by our present poor understanding of the leaf internal conductance to COS. Estimating canopy level CO2 and H2O fluxes requires disentangling leaf COS exchange from other ecosystem sources/sinks of COS. We conclude that future priorities for COS research should be to improve the quantitative understanding of the variability in the ratios of COS to CO2 and H2O deposition velocities and the controlling factors, and to develop operational methods for disentangling ecosystem COS exchange into contributions by leaves and other sources/sinks. To this end, integrated studies, which concurrently quantify the ecosystem-scale CO2, H2O and COS exchange and the corresponding component fluxes, are urgently needed

    Volatile organic compounds (VOC) as biomarkers for detection of Ceratocystis platani

    Get PDF
    AbstractCeratocystis platani causes canker stain of plane trees, and it represents a serious disease of Platanus spp. both in the United States and Europe. Current chemical or biological controls do not effectively manage C. platani, so new preventive methods need to be developed in order to limit this pathogen spreading. In this work, we have characterized the main volatile organic compounds (VOC) emitted in vitro from pure cultures of C. platani and other common pathogenic fungal species of hosts plants growing in the same ecosystems as plane trees. We found that C. platani emitted a similar blend of VOC compared with phylogenetically similar species C. populicola. In particular, C. platani was characterized by emission of isoamyl acetate and isobutyl acetate while C. populicola by ethyl acetate and isobutyl acetate, which were not released by any of the other out‐group fungal species grown on the same medium. Moreover, following a targeted approach based on the main VOC found in vitro, we have successfully validated in vivo that VOC uniquely emitted by C. platani (i.e. isobutyl acetate along with isoamyl alcohol) were released from the bark of plane trees following C. platani inoculation. Our results highlight the possibility to exploit VOC emitted specifically by C. platani as biomarkers to recognize Platanus x acerifolia plants infected by this pathogen

    Exploring mobility in Italian Neolithic and Copper Age communities

    Get PDF
    As a means for investigating human mobility during late the Neolithic to the Copper Age in central and southern Italy, this study presents a novel dataset of enamel oxygen and carbon isotope values (δ18Oca and δ13Cca) from the carbonate fraction of biogenic apatite for one hundred and twenty-six individual teeth coming from two Neolithic and eight Copper Age communities. The measured δ18Oca values suggest a significant role of local sources in the water inputs to the body water, whereas δ13Cca values indicate food resources, principally based on C3 plants. Both δ13Cca and δ18Oca ranges vary substantially when samples are broken down into local populations. Statistically defined thresholds, accounting for intra-site variability, allow the identification of only a few outliers in the eight Copper Age communities, suggesting that sedentary lifestyle rather than extensive mobility characterized the investigated populations. This seems to be also typical of the two studied Neolithic communities. Overall, this research shows that the investigated periods in peninsular Italy differed in mobility pattern from the following Bronze Age communities from more northern areas

    Root Exposure to 5-Aminolevulinic Acid (ALA) Affects Leaf Element Accumulation, Isoprene Emission, Phytohormonal Balance, and Photosynthesis of Salt-Stressed Arundo donax

    No full text
    Arundo donax has been recognized as a promising crop for biomass production on marginal lands due to its superior productivity and stress tolerance. However, salt stress negatively impacts A. donax growth and photosynthesis. In this study, we tested whether the tolerance of A. donax to salinity stress can be enhanced by the addition of 5-aminolevulinic acid (ALA), a known promoter of plant growth and abiotic stress tolerance. Our results indicated that root exposure to ALA increased the ALA levels in leaves along the A. donax plant profile. ALA enhanced Na+ accumulation in the roots of salt-stressed plants and, at the same time, lowered Na+ concentration in leaves, while a reduced callose amount was found in the root tissue. ALA also improved the photosynthetic performance of salt-stressed apical leaves by stimulating stomatal opening and preventing an increase in the ratio between abscisic acid (ABA) and indol-3-acetic acid (IAA), without affecting leaf methanol emission and plant growth. Supply of ALA to the roots reduced isoprene fluxes from leaves of non-stressed plants, while it sustained isoprene fluxes along the profile of salt-stressed A. donax. Thus, ALA likely interacted with the methylerythritol 4-phosphate (MEP) pathway and modulate the synthesis of either ABA or isoprene under stressful conditions. Overall, our study highlights the effectiveness of ALA supply through soil fertirrigation in preserving the young apical developing leaves from the detrimental effects of salt stress, thus helping of A. donax to cope with salinity and favoring the recovery of the whole plant once the stress is removed

    The use of branch enclosures to asses direct and indirect effects of elevated CO 2 on photosynthesis, respiration and isoprene emission of Populus alba leaves

    No full text
    Abstract: The use of branch enclosures to asses direct and indirect effects of elevated CO 2 on photosynthesis, respiration and isoprene emission of Populus alba leaves. We used a novel system of branch enclosures to study the impact of elevated CO 2 (900 ppm) on the gas-exchange characteristics of developed and developing leaves of white poplar (Populus alba L.), as well as of leaves subsequently developing at ambient CO 2 , outside the enclosures in which the CO 2 concentration was raised. We found no significant effect of elevated CO 2 on photosynthesis, respiration and isoprene emission, as the rates of developed and developing leaves inside the enclosures, and of leaves developing outside the enclosures, were similar to those recorded using enclosures maintained at ambient CO 2 . The enclosure system, however, largely influenced the rates of gas-exchange. In fact, leaves already developed inside the enclosures showed rates of photosynthesis, stomatal conductance, and isoprene emission higher than leaves developing inside the enclosures, and also higher than leaves developing outside the enclosure. These differences were caused by a higher efficiency in the light use and by a higher Ribulose 1,5 bisphosphate carboxylase (Rubisco) activity in leaves fully developed inside enclosures than in the other leaf classes. The experiment overall suggests that branch enclosures may alter the physiology of the plants, reducing or counteracting the impact of elevated CO 2 , which we predicted to stimulate photosynthesis and uncouple isoprene emission from photosynthesis. This may be an important bias against the use of enclosure systems for studies of the impact of environmental constraints and global change factors on physiological features
    corecore