53 research outputs found

    Enzyme replacement therapy with taliglucerase alfa: 36-month safety and efficacy results in adult patients with Gaucher disease previously treated with imiglucerase.

    Get PDF
    Taliglucerase alfa is the first available plant cell-expressed human recombinant therapeutic protein. It is indicated for treatment of patients with type 1 Gaucher disease (GD) in adult and pediatric patients in several countries. Study PB-06-002 examined the safety and efficacy of taliglucerase alfa for 9 months in patients who previously received imiglucerase. The results of adult patients from Study PB-06-002 who continued receiving taliglucerase alfa in extension Study PB-06-003 for up to 36 months are reported here. Eighteen patients received at least one dose of taliglucerase alfa in Study PB-06-003; 10 patients completed 36 total months of therapy, and four patients who transitioned to commercial drug completed 30-33 months of treatment. In patients who completed 36 total months of treatment, mean percent (±standard error) changes from baseline/time of switch to taliglucerase alfa to 36 months were as follows: hemoglobin concentration, -1.0% (±1.9%; n = 10); platelet count, +9.3% (±9.8%; n = 10); spleen volume measured in multiples of normal (MN), -19.8% (±9.9%; n = 7); liver volume measured in MN, +0.9% (±5.4%; n = 8); chitotriosidase activity, -51.5% (±8.1%; n = 10); and CCL18 concentration, -36.5 (±8.0%; n = 10). Four patients developed antidrug antibodies, including one with evidence of neutralizing activity in vitro. All treatment-related adverse events were mild or moderate and transient. The 36-month results of switching from imiglucerase to taliglucerase alfa treatment in adults with GD provide further data on the clinical safety and efficacy of taliglucerase alfa beyond the initial 9 months of the original study. www.clinicaltrials.gov identifier NCT00705939. Am. J. Hematol. 91:661-665, 2016. © 2016 Wiley Periodicals, Inc

    Quantum Fermion Hair

    Full text link
    It is shown that the Dirac operator in the background of a magnetic %Reissner-Nordstr\"om black hole and a Euclidean vortex possesses normalizable zero modes in theories containing superconducting cosmic strings. One consequence of these zero modes is the presence of a fermion condensate around magnetically charged black holes which violates global quantum numbers.Comment: 16pp (harvmac (l)) and 2 figs.(not included

    Phase 1b/2a trial of the superoxide dismutase mimetic GC4419 to reduce chemoradiotherapy-induced oral mucositis in patients with oral cavity or oropharyngeal carcinoma

    Get PDF
    PURPOSE: To assess the safety of the superoxide dismutase mimetic GC4419 in combination with radiation and concurrent cisplatin for patients with oral cavity or oropharyngeal cancer (OCC) and to assess the potential of GC4419 to reduce severe oral mucositis (OM). PATIENTS AND METHODS: Patients with locally advanced OCC treated with definitive or postoperative intensity modulated radiation therapy (IMRT) plus cisplatin received GC4419 by 60-minute intravenous infusion, ending \u3c60 minutes before IMRT, Monday through Friday for 3 to 7 weeks, in a dose and duration escalation study. Oral mucositis was assessed twice weekly during and weekly after IMRT. RESULTS: A total of 46 patients received GC4419 in 11 separate dosing and duration cohorts: dose escalation occurred in 5 cohorts receiving 15 to 112 mg/d over 3 weeks (n=20), duration escalation in 3 cohorts receiving 112 mg/d over 4 to 6 weeks (n=12), and then 3 additional cohorts receiving 30 or 90 mg/d over 6 to 7 weeks (n=14). A maximum tolerated dose was not reached. One dose-limiting toxicity (grade 3 gastroenteritis and vomiting with hyponatremia) occurred in each of 2 separate cohorts at 112 mg. Nausea/vomiting and facial paresthesia during infusion seemed to be GC4419 dose-related. Severe OM occurred through 60 Gy in 4 of 14 patients (29%) dosed for 6 to 7 weeks, with median duration of only 2.5 days. CONCLUSIONS: The safety of GC4419 concurrently with chemoradiation for OCC was acceptable. Toxicities included nausea/vomiting and paresthesia. Doses of 30 and 90 mg/d administered for 7 weeks were selected for further study. In an exploratory analysis, severe OM seemed less frequent and briefer than expected

    Regulation of Glutamine Carrier Proteins by RNF5 Determines Breast Cancer Response to ER Stress-Inducing Chemotherapies

    Get PDF
    SummaryMany tumor cells are fueled by altered metabolism and increased glutamine (Gln) dependence. We identify regulation of the L-glutamine carrier proteins SLC1A5 and SLC38A2 (SLC1A5/38A2) by the ubiquitin ligase RNF5. Paclitaxel-induced ER stress to breast cancer (BCa) cells promotes RNF5 association, ubiquitination, and degradation of SLC1A5/38A2. This decreases Gln uptake, levels of TCA cycle components, mTOR signaling, and proliferation while increasing autophagy and cell death. Rnf5-deficient MMTV-PyMT mammary tumors were less differentiated and showed elevated SLC1A5 expression. Whereas RNF5 depletion in MDA-MB-231 cells promoted tumorigenesis and abolished paclitaxel responsiveness, SLC1A5/38A2 knockdown elicited opposing effects. Inverse RNF5hi/SLC1A5/38A2lo expression was associated with positive prognosis in BCa. Thus, RNF5 control of Gln uptake underlies BCa response to chemotherapies

    Phase IIb, Randomized, Double-Blind Trial of GC4419 Versus Placebo to Reduce Severe Oral Mucositis Due to Concurrent Radiotherapy and Cisplatin For Head and Neck Cancer

    Get PDF
    PURPOSE: Oral mucositis (OM) remains a common, debilitating toxicity of radiation therapy (RT) for head and neck cancer. The goal of this phase IIb, multi-institutional, randomized, double-blind trial was to compare the efficacy and safety of GC4419, a superoxide dismutase mimetic, with placebo to reduce the duration, incidence, and severity of severe OM (SOM). PATIENTS AND METHODS: A total of 223 patients (from 44 institutions) with locally advanced oral cavity or oropharynx cancer planned to be treated with definitive or postoperative intensity-modulated RT (IMRT; 60 to 72 Gy [≥ 50 Gy to two or more oral sites]) plus cisplatin (weekly or every 3 weeks) were randomly assigned to receive 30 mg (n = 73) or 90 mg (n = 76) of GC4419 or to receive placebo (n = 74) by 60-minute intravenous administration before each IMRT fraction. WHO grade of OM was assessed biweekly during IMRT and then weekly for up to 8 weeks after IMRT. The primary endpoint was duration of SOM tested for each active dose level versus placebo (intent-to-treat population, two-sided α of .05). The National Cancer Institute Common Terminology Criteria for Adverse Events, version 4.03, was used for adverse event grading. RESULTS: Baseline patient and tumor characteristics as well as treatment delivery were balanced. With 90 mg GC4419 versus placebo, SOM duration was significantly reduced (P = .024; median, 1.5 v 19 days). SOM incidence (43% v 65%; P = .009) and severity (grade 4 incidence, 16% v 30%; P = .045) also were improved. Intermediate improvements were seen with the 30-mg dose. Safety was comparable across arms, with no significant GC4419-specific toxicity nor increase of known toxicities of IMRT plus cisplatin. The 2-year follow-up for tumor outcomes is ongoing. CONCLUSION: GC4419 at a dose of 90 mg produced a significant, clinically meaningful reduction of SOM duration, incidence, and severity with acceptable safety

    Phase transition in Random Circuit Sampling

    Full text link
    Quantum computers hold the promise of executing tasks beyond the capability of classical computers. Noise competes with coherent evolution and destroys long-range correlations, making it an outstanding challenge to fully leverage the computation power of near-term quantum processors. We report Random Circuit Sampling (RCS) experiments where we identify distinct phases driven by the interplay between quantum dynamics and noise. Using cross-entropy benchmarking, we observe phase boundaries which can define the computational complexity of noisy quantum evolution. We conclude by presenting an RCS experiment with 70 qubits at 24 cycles. We estimate the computational cost against improved classical methods and demonstrate that our experiment is beyond the capabilities of existing classical supercomputers

    Overcoming leakage in scalable quantum error correction

    Full text link
    Leakage of quantum information out of computational states into higher energy states represents a major challenge in the pursuit of quantum error correction (QEC). In a QEC circuit, leakage builds over time and spreads through multi-qubit interactions. This leads to correlated errors that degrade the exponential suppression of logical error with scale, challenging the feasibility of QEC as a path towards fault-tolerant quantum computation. Here, we demonstrate the execution of a distance-3 surface code and distance-21 bit-flip code on a Sycamore quantum processor where leakage is removed from all qubits in each cycle. This shortens the lifetime of leakage and curtails its ability to spread and induce correlated errors. We report a ten-fold reduction in steady-state leakage population on the data qubits encoding the logical state and an average leakage population of less than 1×10−31 \times 10^{-3} throughout the entire device. The leakage removal process itself efficiently returns leakage population back to the computational basis, and adding it to a code circuit prevents leakage from inducing correlated error across cycles, restoring a fundamental assumption of QEC. With this demonstration that leakage can be contained, we resolve a key challenge for practical QEC at scale.Comment: Main text: 7 pages, 5 figure
    • …
    corecore