605 research outputs found

    CN Bimodality at Low Metallicity: The Globular Cluster M53

    Full text link
    We present low resolution UV-blue spectroscopic observations of red giant stars in the globular cluster M53 ([Fe/H]=-1.84), obtained to study primordial abundance variations and deep mixing via the CN and CH absorption bands. The metallicity of M53 makes it an attractive target: a bimodal distribution of 3883 angstrom CN bandstrength is common in moderate- and high-metallicity globular clusters ([Fe/H] > -1.6) but unusual in those of lower metallicity ([Fe/H] < -2.0). We find that M53 is an intermediate case, and has a broad but not strongly bimodal distribution of CN bandstrength, with CN and CH bandstrengths anticorrelated in the less-evolved stars. Like many other globular clusters, M53 also exhibits a general decline in CH bandstrength and [C/Fe] abundance with rising luminosity on the red giant branch.Comment: 8 pages including 11 figures and 1 table, accepted by PAS

    A role for glycolipid biosynthesis in severe fever with thrombocytopenia syndrome virus entry

    Get PDF
    A novel bunyavirus was recently found to cause severe febrile illness with high mortality in agricultural regions of China, Japan, and South Korea. This virus, named severe fever with thrombocytopenia syndrome virus (SFTSV), represents a new group within the Phlebovirus genus of the Bunyaviridae. Little is known about the viral entry requirements beyond showing dependence on dynamin and endosomal acidification. A haploid forward genetic screen was performed to identify host cell requirements for SFTSV entry. The screen identified dependence on glucosylceramide synthase (ugcg), the enzyme responsible for initiating de novo glycosphingolipid biosynthesis. Genetic and pharmacological approaches confirmed that UGCG expression and enzymatic activity were required for efficient SFTSV entry. Furthermore, inhibition of UGCG affected a post-internalization stage of SFTSV entry, leading to the accumulation of virus particles in enlarged cytoplasmic structures, suggesting impaired trafficking and/or fusion of viral and host membranes. These findings specify a role for glucosylceramide in SFTSV entry and provide a novel target for antiviral therapies

    Abundances in Stars from the Red Giant Branch Tip to the Near Main Sequence in M71: II. Iron Abundance

    Full text link
    We present [Ffe/H] abundance results that involve a sample of stars with a wide range in luminosity from luminous giants to stars near the turnoff in a globular cluster. Our sample of 25 stars in M71 includes 10 giant stars more luminous than the RHB, 3 horizontal branch stars, 9 giant stars less luminous than the RHB, and 3 stars near the turnoff. We analyzed both Fe I and Fe II lines in high dispersion spectra observed with HIRES at the W. M. Keck Observatory. We find that the [Fe/H] abundances from both Fe I and Fe II lines agree with each other and with earlier determinations. Also the [Fe/H] obtained from Fe I and Fe II lines is constant within the rather small uncertainties for this group of stars over the full range in Teff and luminosity, suggesting that NLTE effects are negligible in our iron abundance determination. In this globular cluster, there is no difference among the mean [Fe/H] of giant stars located at or above the RHB, RHB stars, giant stars located below the RHB and stars near the turnoff.Comment: Minor changes to conform to version accepted for publication, with several new figures (Paper 2 of a pair

    Oxygen Abundances in Two Metal-Poor Subgiants from the Analysis of the 6300 A Forbidden O I Line

    Full text link
    Recent LTE analyses (Israelian et al. 1998 and Bosegaard et al. 1999) of the OH bands in the optical-ultraviolet spectra of nearby metal-poor subdwarfs indicate that oxygen abundances are generally higher than those previously determined. The difference increases with decreasing metallicity and reaches delta([O/Fe]) ~ +0.6 dex as [Fe/H] approaches -3.0. Employing high resolution (R = 50000), high S/N (~ 250) echelle spectra of the two stars found by Israelian et al. (1998) to have the highest [O/Fe]-ratios, viz, BD +23 3130 and BD +37 1458, we conducted abundance analyses based on about 60 Fe I and 7-9 Fe II lines. We determined from Kurucz LTE models the values of the stellar parameters, as well as abundances of Na, Ni, and the traditional alpha-elements, independent of the calibration of color vs TeffT_{eff} scales. We determined oxygen abundances from spectral synthesis of the stronger line (6300 A) of the [O I] doublet. The syntheses of the [O I] line lead to smaller values of [O/Fe], consistent with those found earlier among halo field and globular cluster giants. We obtain [O/Fe] = +0.35 +/- 0.2 for BD +23 3130 and +0.50 +/- 0.2 for BD +37 1458. In the former, the [O I] line is very weak (~ 1 mA), so that the quoted [O/Fe] value may in reality be an upper limit. Therefore in these two stars a discrepancy exists between the [O/Fe]- ratios derived from [O I] and the OH feature, and the origin of this difference remains unclear. Until the matter is clarified, we suggest it is premature to conclude that the ab initio oxygen abundances of old, metal-poor stars need to be revised drastically upward.Comment: 38 pages, 5 tables, 14 figures To appear in July 1999 AJ Updated April 16, 1999. Fixed typo

    The Production of Sodium and Aluminum in Globular Cluster Red Giant Stars

    Full text link
    We study the production of Na and Al around the hydrogen shell of two red-giant sequences of different metallicity in order to explain the abundance variations seen in globular cluster stars in a mixing scenario. Using detailed stellar models together with an extensive nuclear reaction network, we have calculated the distribution of the various isotopic abundances around the hydrogen shell at numerous points along the red-giant branch. These calculations allow for the variation in both temperature and density in the shell region as well as the timescale of the nuclear processing, as governed by the outward movement of the hydrogen shell. The reaction network uses updated rates over those of Caughlin \& Fowler (1988). We find evidence for the production of Na and Al occurring in the NeNa and MgAl cycles. In particular, Na is significantly enhanced throughout the region above the hydrogen shell. The use of the newer reaction rates causes a substantial increase in the production of 27^{27}Al above the hydrogen shell through heavy leakage from the NeNa cycle and should have an important effect on the predicted surface abundances. We also find that the nuclear processing is considerably more extensive at lower metallicities.Comment: 4 pages with 4 EPS figures embedded, accepted by ApJL March 28, 199

    C and N Abundances in Stars At the Base of the Red Giant Branch in M5

    Get PDF
    We present an analysis of a large sample of moderate resolution Keck LRIS spectra of subgiant (V \sim 17.2) and fainter stars in the Galactic globular cluster M5 (NGC 5904) with the goal of deriving C and N abundances. Star-to-star stochastic variations with significant range in both [C/Fe] and [N/Fe] are found at all luminosities extending to the bottom of the RGB at M_V \sim +3. Similar variations in CH appear to be present in the main sequence turnoff spectra. There is no sign of a change in the behavior of C and N with evolutionary stage over the full range in luminosity of the RGB and SGB. The C and N abundances appear strongly anti-correlated, as would be expected from the CN-cycle processing of stellar material. Yet the present stars are considerably fainter than the RGB bump, the point at which deep mixing is believed to set in. On this basis, while the observed abundance pattern is consistent with proton capture nucleosynthesis, we infer that the site of the reactions is likely not within the present sample, but rather in a population of more massive (2 -- 5 M(Sun)) now defunct stars. The range of variation of the N abundances is very large and the sum of C+N increases as C decreases. To reproduce this requires the incorporation not only of CN but also of ON-processed material. Furthermore, the existence of this correlation is quite difficult to reproduce with an external mechanism such as ``pollution'' with material processed in a more massive AGB star, which mechanism is fundamentally stochastic in nature. We therefore suggest that although the internal mixing hypothesis has serious flaws,new theoretical insights are needed and it should not be ruled out yet. (abridged)Comment: Slightly updated version to conform to that accepted by the A

    Linearly scaling direct method for accurately inverting sparse banded matrices

    Get PDF
    In many problems in Computational Physics and Chemistry, one finds a special kind of sparse matrices, termed "banded matrices". These matrices, which are defined as having non-zero entries only within a given distance from the main diagonal, need often to be inverted in order to solve the associated linear system of equations. In this work, we introduce a new O(n) algorithm for solving such a system, being n X n the size of the matrix. We produce the analytical recursive expressions that allow to directly obtain the solution, as well as the pseudocode for its computer implementation. Moreover, we review the different options for possibly parallelizing the method, we describe the extension to deal with matrices that are banded plus a small number of non-zero entries outside the band, and we use the same ideas to produce a method for obtaining the full inverse matrix. Finally, we show that the New Algorithm is competitive, both in accuracy and in numerical efficiency, when compared to a standard method based in Gaussian elimination. We do this using sets of large random banded matrices, as well as the ones that appear when one tries to solve the 1D Poisson equation by finite differences.Comment: 24 pages, 5 figures, submitted to J. Comp. Phy
    • …
    corecore