301 research outputs found

    Influence of laser-lok surface on immediate functional loading of implants in single-tooth replacement: a 2-year prospective clinical study.

    Get PDF
    he purpose of this study was to evaluate the influence of a Laser-Lok microtexturing surface on clinical attachment level and crestal bone remodeling around immediately functionally loaded implants in single-tooth replacement. Seventy-seven patients were included in a prospective, randomized study and divided into two groups. Group 1 (control) consisted of non-Laser-Lok type implants (n = 39), while in group 2 (test), Laser-Lok type implants were used (n = 39). Crestal bone loss (CBL) and clinical parameters including clinical attachment level (CAL), Plaque Index (PI), and bleeding on probing were recorded at baseline examinations and at 6, 12, and 24 months after loading with the final restoration. One implant was lost in the control group and one in the test group, giving a total survival rate of 96.1% after 2 years. PI and BOP outcomes were similar for both implant types without statistical differences. A mean CAL loss of 1.10 ± 0.51 mm was observed during the first 2 years in group 1, while the mean CAL loss observed in group 2 was 0.56 ± 0.33 mm. Radiographically, group 1 implants showed a mean crestal bone loss of 1.07 ± 0.30 mm compared with 0.49 ± 0.34 mm for group 2. The type of implant did not influence the survival rate, whereas Laser-Lok implants resulted in greater CAL and in shallower radiographic peri-implant CBL than non-Laser-Lok implants

    An extended hybrid magnetohydrodynamics gyrokinetic model for numerical simulation of shear Alfv\'en waves in burning plasmas

    Full text link
    Adopting the theoretical framework for the generalized fishbonelike dispersion relation, an extended hybrid magnetohydrodynamics gyrokinetic simulation model has been derived analytically by taking into account both thermal ion compressibility and diamagnetic effects in addition to energetic particle kinetic behaviors. The extended model has been used for implementing an eXtended version of Hybrid Magnetohydrodynamics Gyrokinetic Code (XHMGC) to study thermal ion kinetic effects on Alfv\'enic modes driven by energetic particles, such as kinetic beta induced Alfv\'en eigenmodes in tokamak fusion plasmas

    Nonlinear dynamics of beta induced Alfv\'en eigenmode driven by energetic particles

    Full text link
    Nonlinear saturation of beta induced Alfv\'en eigenmode, driven by slowing down energetic particles via transit resonance, is investigated by the nonlinear hybrid magnetohyrodynamic gyro-kinetic code (XHMGC). Saturation is characterized by frequency chirping and symmetry breaking between co- and counter-passing particles, which can be understood as the the evidence of resonance-detuning. The scaling of the saturation amplitude with the growth rate is also demonstrated to be consistent with radial resonance detuning due to the radial non-uniformity and mode structure

    Durability of a recombination catalyst-based membrane-electrode assembly for electrolysis operation at high current density

    Get PDF
    Hydrogen production through polymer electrolyte membrane water electrolysis was investigated at high current density (4 A cm-2). A PtCo recombination catalyst-based membrane-electrode assembly (MEA) was assessed in terms of performance, efficiency and durability. The electrolysis cell consisted of a thin (50 µm) perfluorosulfonic acid membrane and low platinum group metals (PGM) catalyst loadings (0.6 mgMEA PGM cm-2). An unsupported PtCo catalyst was successfully integrated in the anode. A composite catalytic layer made of IrRuOx and PtCo assisted both oxygen evolution and oxidation of hydrogen permeated through the membrane. The cell voltage for the recombination catalyst-based MEA was about 30 mV lower than the bare MEA during a 3500 h durability test. The modified MEA showed low performance losses during 3500 hours operation at high current density (4 A cm-2) with low catalyst loadings. A decay rate of 9 µV/h was observed in the last 1000 hours. These results are promising for decreasing the capital costs of polymer electrolyte membrane electrolysers. Moreover, the stable voltage efficiency of about 80% vs. the high heating value (HHV) of hydrogen at 4 A cm-2, here achieved, appears very promising to decrease operating expenditures

    ASTEP South: An Antarctic Search for Transiting ExoPlanets around the celestial South pole

    Get PDF
    ASTEP South is the first phase of the ASTEP project (Antarctic Search for Transiting ExoPlanets). The instrument is a fixed 10 cm refractor with a 4kx4k CCD camera in a thermalized box, pointing continuously a 3.88 degree x 3.88 degree field of view centered on the celestial South pole. ASTEP South became fully functional in June 2008 and obtained 1592 hours of data during the 2008 Antarctic winter. The data are of good quality but the analysis has to account for changes in the point spread function due to rapid ground seeing variations and instrumental effects. The pointing direction is stable within 10 arcseconds on a daily timescale and drifts by only 34 arcseconds in 50 days. A truly continuous photometry of bright stars is possible in June (the noon sky background peaks at a magnitude R=15 arcsec-2 on June 22), but becomes challenging in July (the noon sky background magnitude is R=12.5 arcsec?2 on July 20). The weather conditions are estimated from the number of stars detected in the field. For the 2008 winter, the statistics are between 56.3 % and 68.4 % of excellent weather, 17.9 % to 30 % of veiled weather and 13.7 % of bad weather. Using these results in a probabilistic analysis of transit detection, we show that the detection efficiency of transiting exoplanets in one given field is improved at Dome C compared to a temperate site such as La Silla. For example we estimate that a year-long campaign of 10 cm refractor could reach an efficiency of 69 % at Dome C versus 45 % at La Silla for detecting 2-day period giant planets around target stars from magnitude 10 to 15. This shows the high potential of Dome C for photometry and future planet discoveries. [Short abstract

    Directly Imaged L-T Transition Exoplanets in the Mid-Infrared

    Full text link
    Gas-giant planets emit a large fraction of their light in the mid-infrared (\gtrsim3μ\mum), where photometry and spectroscopy are critical to our understanding of the bulk properties of extrasolar planets. Of particular importance are the L and M-band atmospheric windows (3-5μ\mum), which are the longest wavelengths currently accessible to ground-based, high-contrast imagers. We present binocular LBT AO images of the HR 8799 planetary system in six narrow-band filters from 3-4μ\mum, and a Magellan AO image of the 2M1207 planetary system in a broader 3.3μ\mum band. These systems encompass the five known exoplanets with luminosities consistent with L\rightarrowT transition brown dwarfs. Our results show that the exoplanets are brighter and have shallower spectral slopes than equivalent temperature brown dwarfs in a wavelength range that contains the methane fundamental absorption feature (spanned by the narrowband filters and encompassed by the broader 3.3μ\mum filter). For 2M1207 b, we find that thick clouds and non-equilibrium chemistry caused by vertical mixing can explain the object's appearance. For the HR 8799 planets, we present new models that suggest the atmospheres must have patchy clouds, along with non-equilibrium chemistry. Together, the presence of a heterogeneous surface and vertical mixing presents a picture of dynamic planetary atmospheres in which both horizontal and vertical motions influence the chemical and condensate profiles.Comment: Accepted to Ap
    corecore