7 research outputs found

    Fluorogenic Dendrons with Multiple Donor Chromophores as Bright Genetically Targeted and Activated Probes

    No full text
    We have developed a class of dendron-based fluorogenic dyes (termed dyedrons) comprised of multiple cyanine (Cy3) donors coupled to a single malachite green (MG) acceptor that fluoresce only when the MG is noncovalently but specifically bound to a cognate single chain antibody (scFv). These cell-impermeant dyedrons exploit efficient intramolecular energy transfer from Cy3 donors to stoichiometrically amplify the fluorescence of MG chromophores that are activated by binding to the scFv. These chromophore enhancements, coupled with our optimized scFv, can significantly increase fluorescence emission generated by the dyedron/scFv complex to brightness levels several-fold greater than that for single fluorescent proteins and targeted small molecule fluorophores. Efficient intramolecular quenching of free dyedrons enables sensitive homogeneous (no wash) detection under typical tissue culture conditions, with undetectable nonspecific activation

    Multiexcitation Fluorogenic Labeling of Surface, Intracellular, and Total Protein Pools in Living Cells

    No full text
    Malachite green (MG) is a fluorogenic dye that shows fluorescence enhancement upon binding to its engineered cognate protein, a fluorogen activating protein (FAP). Energy transfer donors such as cyanine and rhodamine dyes have been conjugated with MG to modify the spectral properties of the fluorescent complexes, where the donor dyes transfer energy through Förster resonance energy transfer to the MG complex resulting in binding-conditional fluorescence emission in the far-red region. In this article, we use a violet-excitable dye as a donor to sensitize the far-red emission of the MG-FAP complex. Two blue emitting fluorescent coumarin dyes were coupled to MG and evaluated for energy transfer to the MG-FAP complex via its secondary excitation band. 6,8-Difluoro-7-hydroxycoumarin-3-carboxylic acid (Pacific blue, PB) showed the most efficient energy transfer and maximum brightness in the far-red region upon violet (405 nm) excitation. These blue-red (BluR) tandem dyes are spectrally varied from other tandem dyes and are able to produce fluorescence images of the MG-FAP complex with a large Stokes shift (>250 nm). These dyes are cell-permeable and are used to label intracellular proteins. Used together with a cell-impermeable hexa-Cy3-MG (HCM) dye that labels extracellular proteins, we are able to visualize extracellular, intracellular, and total pools of cellular protein using one fluorogenic tag that combines with distinct dyes to effect different spectral characteristics

    High-Content Surface and Total Expression siRNA Kinase Library Screen with VX-809 Treatment Reveals Kinase Targets that Enhance F508del-CFTR Rescue

    No full text
    The most promising F508del-CFTR corrector, VX-809, has been unsuccessful as an effective, stand-alone treatment for CF patients, but the rescue effect in combination with other drugs may confer an acceptable level of therapeutic benefit. Targeting cellular factors that modify trafficking may act to enhance the cell surface density of F508-CFTR with VX-809 correction. Our goal is to identify druggable kinases that enhance F508del-CFTR rescue and stabilization at the cell surface beyond that achievable with the VX-809 corrector alone. To achieve this goal, we implemented a new high-throughput screening paradigm that quickly and quantitatively measures surface density and total protein in the same cells. This allowed for rapid screening for increased surface targeting and proteostatic regulation. The assay utilizes fluorogen-activating-protein (FAP) technology with cell excluded and cell permeant fluorogenic dyes in a quick, wash-free fluorescent plate reader format on live cells to first measure F508del-CFTR expressed on the surface and then the total amount of F508del-CFTR protein present. To screen for kinase targets, we used Dharmacon’s ON-TARGET<i>plus</i> SMARTpool siRNA Kinase library (715 target kinases) with and without 10 μM VX-809 treatment in triplicate at 37 °C. We identified several targets that had a significant interaction with VX-809 treatment in enhancing surface density with siRNA knockdown. Select small-molecule inhibitors of the kinase targets demonstrated augmented surface expression with VX-809 treatment

    Fluorogen Activating Protein–Affibody Probes: Modular, No-Wash Measurement of Epidermal Growth Factor Receptors

    Get PDF
    Fluorescence is essential for dynamic live cell imaging, and affinity reagents are required for quantification of endogenous proteins. Various fluorescent dyes can report on different aspects of biological trafficking, but must be independently conjugated to affinity reagents and characterized for specific biological readouts. Here we present the characterization of a new modular platform for small anti-EGFR affinity probes for studying rapid changes in receptor pools. A protein domain (FAP <sub>dL5**</sub>) that binds to malachite-green (MG) derivatives for fluorescence activation was expressed as a recombinant fusion to one or two copies of the compact EGFR binding affibody Z<sub>EGFR:1907</sub>. This is a recombinant and fluorogenic labeling reagent for native EGFR molecules. In vitro fluorescence assays demonstrated that the binding of these dyes to the FAP–affibody fusions produced thousand-fold fluorescence enhancements, with high binding affinity and fast association rates. Flow cytometry assays and fluorescence microscopy demonstrated that these probes label endogenous EGFR on A431 cells without disruption of EGFR function, and low nanomolar surface <i>K</i><sub>d</sub> values were observed with the double-Z<sub>EGFR:1907</sub> constructs. The application of light-harvesting fluorogens (dyedrons) significantly improved the detected fluorescence signal. Altering the order of addition of the ligand, probe, and dyes allowed differentiation between surface and endocytotic pools of receptors to reveal the rapid dynamics of endocytic trafficking. Therefore, FAP/affibody coupling provides a new approach to construct compact and modular affinity probes that label endogenous proteins on living cells and can be used for studying rapid changes in receptor pools involved in trafficking

    Intracellular pH Measurements Using Perfluorocarbon Nanoemulsions

    No full text
    We report the synthesis and formulation of unique perfluorocarbon (PFC) nanoemulsions enabling intracellular pH measurements in living cells via fluorescent microscopy and flow cytometry. These nanoemulsions are formulated to readily enter cells upon coincubation and contain two cyanine-based fluorescent reporters covalently bound to the PFC molecules, specifically Cy3-PFC and CypHer5-PFC conjugates. The spectral and pH-sensing properties of the nanoemulsions were characterized <i>in vitro</i> and showed the unaltered spectral behavior of dyes after formulation. In rat 9L glioma cells loaded with nanoemulsion, the local pH of nanoemulsions was longitudinally quantified using optical microscopy and flow cytometry and displayed a steady decrease in pH to a level of 5.5 over 3 h, indicating rapid uptake of nanoemulsion to acidic compartments. Overall, these reagents enable real-time optical detection of intracellular pH in living cells in response to pharmacological manipulations. Moreover, recent approaches for <i>in vivo</i> cell tracking using magnetic resonance imaging (MRI) employ intracellular PFC nanoemulsion probes to track cells using <sup>19</sup>F MRI. However, the intracellular fate of these imaging probes is poorly understood. The pH-sensing nanoemulsions allow the study of the fate of the PFC tracer inside the labeled cell, which is important for understanding the PFC cell loading dynamics, nanoemulsion stability and cell viability over time

    Intracellular pH Measurements Using Perfluorocarbon Nanoemulsions

    No full text
    We report the synthesis and formulation of unique perfluorocarbon (PFC) nanoemulsions enabling intracellular pH measurements in living cells via fluorescent microscopy and flow cytometry. These nanoemulsions are formulated to readily enter cells upon coincubation and contain two cyanine-based fluorescent reporters covalently bound to the PFC molecules, specifically Cy3-PFC and CypHer5-PFC conjugates. The spectral and pH-sensing properties of the nanoemulsions were characterized <i>in vitro</i> and showed the unaltered spectral behavior of dyes after formulation. In rat 9L glioma cells loaded with nanoemulsion, the local pH of nanoemulsions was longitudinally quantified using optical microscopy and flow cytometry and displayed a steady decrease in pH to a level of 5.5 over 3 h, indicating rapid uptake of nanoemulsion to acidic compartments. Overall, these reagents enable real-time optical detection of intracellular pH in living cells in response to pharmacological manipulations. Moreover, recent approaches for <i>in vivo</i> cell tracking using magnetic resonance imaging (MRI) employ intracellular PFC nanoemulsion probes to track cells using <sup>19</sup>F MRI. However, the intracellular fate of these imaging probes is poorly understood. The pH-sensing nanoemulsions allow the study of the fate of the PFC tracer inside the labeled cell, which is important for understanding the PFC cell loading dynamics, nanoemulsion stability and cell viability over time

    Intracellular pH Measurements Using Perfluorocarbon Nanoemulsions

    No full text
    We report the synthesis and formulation of unique perfluorocarbon (PFC) nanoemulsions enabling intracellular pH measurements in living cells via fluorescent microscopy and flow cytometry. These nanoemulsions are formulated to readily enter cells upon coincubation and contain two cyanine-based fluorescent reporters covalently bound to the PFC molecules, specifically Cy3-PFC and CypHer5-PFC conjugates. The spectral and pH-sensing properties of the nanoemulsions were characterized <i>in vitro</i> and showed the unaltered spectral behavior of dyes after formulation. In rat 9L glioma cells loaded with nanoemulsion, the local pH of nanoemulsions was longitudinally quantified using optical microscopy and flow cytometry and displayed a steady decrease in pH to a level of 5.5 over 3 h, indicating rapid uptake of nanoemulsion to acidic compartments. Overall, these reagents enable real-time optical detection of intracellular pH in living cells in response to pharmacological manipulations. Moreover, recent approaches for <i>in vivo</i> cell tracking using magnetic resonance imaging (MRI) employ intracellular PFC nanoemulsion probes to track cells using <sup>19</sup>F MRI. However, the intracellular fate of these imaging probes is poorly understood. The pH-sensing nanoemulsions allow the study of the fate of the PFC tracer inside the labeled cell, which is important for understanding the PFC cell loading dynamics, nanoemulsion stability and cell viability over time
    corecore