156 research outputs found

    Weighted-covariance factor fuzzy C-means clustering

    Get PDF
    In this paper, we propose a factor weighted fuzzy c-means clustering algorithm. Based on the inverse of a covariance factor, which assesses the collinearity between the centers and samples, this factor takes also into account the compactness of the samples within clusters. The proposed clustering algorithm allows to classify spherical and non-spherical structural clusters, contrary to classical fuzzy c-means algorithm that is only adapted for spherical structural clusters. Compared with other algorithms designed for non-spherical structural clusters, such as Gustafson-Kessel, Gath-Geva or adaptive Mahalanobis distance-based fuzzy c-means clustering algorithms, the proposed algorithm gives better numerical results on artificial and real well known data sets. Moreover, this algorithm can be used for high dimensional data, contrary to other algorithms that require the computation of determinants of large matrices. Application on Mid-Infrared spectra acquired on maize root and aerial parts of Miscanthus for the classification of vegetal biomass shows that this algorithm can successfully be applied on high dimensional data

    Influence of surface chemistry of fiber and lignocellulosic materials on adhesion properties with polybutylene succinate at nanoscale

    Get PDF
    The production of bio-based composites with enhanced characteristics constitutes a strategic action to minimize the use of fossil fuel resources. The mechanical performances of these materials are related to the specific properties of their components, as well as to the quality of the interface between the matrix and the fibers. In a previous research study, it was shown that the polarity of the matrix played a key role in the mechanisms of fiber breakage during processing, as well as on the final properties of the composite. However, some key questions remained unanswered, and new investigations were necessary to improve the knowledge of the interactions between a lignocellulosic material and a polar matrix. In this work, for the first time, atomic force microscopy based on force spectroscopy measurements was carried out using functionalized tips to characterize the intermolecular interactions at the single molecule level, taking place between poly(butylene succinate) and four different plant fibers. The efficiency of the tip functionalization was checked out by scanning electron microscopy and energy-dispersive X-ray spectroscopy, whereas the fibers chemistry was characterized by Fourier-transform infrared spectroscopy. Larger interactions at the nanoscale level were found between the matrix and hypolignified fibers compared to lignified ones, as in control experiments on single lignocellulosic polymer films. These results could significantly aid in the design of the most appropriate composite composition depending on its final use

    Chute de cheveux

    No full text
    MONTPELLIER-BU Pharmacie (341722105) / SudocSudocFranceF

    Bioinspired lignocellulosic films to understand the mechanical properties of lignified plant cell walls at nanoscale

    No full text
    The physicochemical properties of plant fibres are determined by the fibre morphology and structural features of the cell wall, which is composed of three main layers that differ in chemical composition and architecture. This composition and hierarchical structure are responsible for many of the mechanical properties that are desirable for industrial applications. As interactions between the lignocellulosic polymers at the molecular level are the main factor governing the final cohesion and mechanical properties of plant fibres, atomic force microscopy (AFM) is well suited for the observation and measurement of their physical properties at nanoscale levels. Given the complexity of plant cell walls, we have developed a strategy based on lignocellulosic assemblies with increasing complexity to understand the influence of the different polymers on the nanomechanical properties. Measurements of the indentation moduli performed on one type of lignified cell wall compared with those performed on the corresponding lignocellulosic films clearly show the importance of the lignin in the mechanical properties of cell walls. Through this strategy, we envision a wide application of bioinspired systems in future studies of the physical properties of fibres

    Improvment of indoor short composting

    No full text
    International audienc
    • …
    corecore