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Abstract— In this paper, we propose a factor weighted fuzzy c-

means clustering algorithm. Based on the inverse of a covariance 

factor, which assesses the collinearity between the centers and 

samples, this factor takes also into account the compactness of the 

samples within clusters. The proposed clustering algorithm allows 

to classify spherical and non-spherical structural clusters, 

contrary to classical fuzzy c-means algorithm that is only adapted 

for spherical structural clusters. Compared with other algorithms 

designed for non-spherical structural clusters, such as Gustafson-

Kessel, Gath-Geva or adaptive Mahalanobis distance-based fuzzy 

c-means clustering algorithms, the proposed algorithm gives 

better numerical results on artificial and real well known data sets. 

Moreover, this algorithm can be used for high dimensional data, 

contrary to other algorithms that require the computation of 

determinants of large matrices. Application on Mid-Infrared 

spectra acquired on maize root and aerial parts of Miscanthus for 

the classification of vegetal biomass shows that this algorithm can 

successfully be applied on high dimensional data. 

Keywords— Fuzzy C-Means (FCM) clustering; Covariance-

based weight; GK-algorithm; GG-algorithm; FCM-M algorithm; 

FCM-CM algorithm; FCM-SM algorithm; Mid-infrared (MIR) 

spectra; Classification of vegetal biomass. 

I. INTRODUCTION 

Clustering algorithms play an important role in data analysis 
and interpretation. A clustering algorithm groups data into 
clusters so that the data objects within a cluster have high 
similarity in comparison to one another, but are dissimilar to 
those data objects in other clusters. Fuzzy C-Means (FCM) is a 
very well-known algorithm of clustering which allows a data 
object to belong to several clusters. This method, developed by 
Dunn in 1973 [1] and improved by Bezdek in 1981 [2], is 
frequently used in pattern recognition. 

The classical FCM algorithm is based on the Euclidean 
distance that is adapted for spherical structural clusters. The 
Mahalanobis Distance (MD) can be used to cover elliptical 
cases. However, Krishnapuram and Kim [3] pointed out that the 
MD cannot be used directly in the FCM algorithm as the number 
of cluster differs from the number of samples in the data set. To 
clusters data sets with different geometrical shapes, Gustafson-
Kessel [4] proposed the GK, which is a FCM algorithm based 
on the Euclidian distance employing an adaptive norm in the 
clustering process. However, this algorithm add the constraint 
of a fuzzy covariance matrix not directly derived from the 
objective function. The Gath-Geva (GG) algorithm [5], an 

extension of GK, takes the size and density of the clusters into 
account. However, GG uses a Gaussian distance that can only 
be used for data sets with multivariate normal distributions. 

Liu and al. [6] have improved the limitation of GK and GG 
algorithms by adding a regulating factor of covariance matrix to 
each class. They modify the classical FCM algorithm by 
imposing in the objective function a logarithm of the 
determinant of the inverse covariance matrix. This algorithm 
based on an adaptive MD was called FCM-M. For improving 
the stability of the clustering results, they proposed another 
algorithm, the FCM-CM, by replacing all covariance matrices 
with the same covariance matrix in the computation of the 
objective function. They also proposed the FCM-SM algorithm 
that normalize each feature in the objective function, which 
implies that covariance matrices become correlation matrices 
[6]. However, these algorithms cannot be used for high 
dimensional data, such as spectra, because the estimation of the 
determinant of large matrices is computationally expensive and 
numerical solution may become instable. 

The aim of this paper is to propose a factor weighted FCM 
algorithm based on the inverse of the covariance between all 
samples and the center of a class. The proposed clustering 
algorithm allows to cover spherical and non-spherical (elliptical) 
structural clusters. We compare the performances of our 
algorithm with respect to FCM, GG, GK, FCM-M, FCM-CM, 
and FCM-SM on a simulated data set and on well-known data 
sets that are classically used for FCM comparison purposes: real 
data sets: Iris, WBCD, WDBC, and Wine [7], [8] as well as 
artificial data sets generated by random generators: DataSet-3-
3, DataSet-4-3, and DataSet-5-2 [9]. We show on real high 
dimensional Mid-Infrared spectra that our algorithm gives better 
results as compared to the classical FCM algorithm.. 

II. FUZZY C-MEANS CLUSTERING (FCM) ALGORITHM 

The FCM algorithm (a fuzzy version of the well know K-

Means clustering algorithm) introduces the concept of fuzzy set 

in the class definition: each sample 𝒔𝑖 = [𝑠𝑖1 . . 𝑠𝑖𝑙  . . 𝑠𝑖𝐿]𝑇 ∈ 𝑹𝐿 

belongs to each cluster “j” with a certain membership 

degree   𝑢𝑖𝑗 , a cluster being characterized by its center of 

gravity  𝒄𝑗 = [𝑐𝑗1. . 𝑐𝑗𝑙  . . 𝑐𝑗𝐿]𝑇 ∈ 𝑹𝐿 . The FCM algorithm 

minimizes an objective function based on the Euclidian distance 

between samples and centers of clusters weighted by the fuzzy 

memberships [1], [2] 

ISBN: 978-1-4799-5680-7/15/$31.00 ©2015 IEEE                                                                                                        144



𝐽𝐹𝐶𝑀  = ∑ ∑ 𝑢𝑖𝑗
𝑚(𝒔𝑖 − 𝒄𝑗)𝑇(𝒔𝑖 − 𝒄𝑗)𝑁

𝑖=1
𝐾
𝑗=1 ,            (1) 

with N the number of available samples, K the desired number 

of clusters, and m ∈ [1, ∞ [ a fuzzier usually taken m = 2. 
It was proved that the following iterative algorithm minimizes 
the objective function [2]. 

Step 1) Initialize all memberships 𝑢𝑖𝑗 with random values 

ranging between 0 and 1 such they satisfy the constraint: 

    ∑ 𝑢𝑖𝑗
𝐾
𝑗=1 = 1, ∀ 𝑖 = 1 … 𝑁                           (2) 

Step 2) Calculate the centers of cluster:  

 𝒄𝑗 =∑
𝑢𝑖𝑗

𝑚

∑ 𝑢𝑖𝑗
𝑚𝑁

𝑖=1

𝑁
𝑖=1 𝒔𝑖,    ∀ 𝑗 = 1 … K             

Step 3) Update the memberships with respect to (2): 

𝑢𝑖𝑗 = [∑ [
(𝒔𝑖−𝒄𝑗)𝑇(𝒔𝑖−𝒄𝑗)

(𝒔𝑖−𝒄𝑙)𝑇(𝒔𝑖−𝒄𝑙) 
]

1

𝑚−1𝐾
𝑙=1 ]

−1

                  (3) 

Step 4) Repeat steps 2 and 3 until the algorithm converges, i.e. 

the difference between the current membership matrix and the 

previous one is below a specified tolerance value, ϵ, or the 

number of iteration reaches a maximum value. 

III. WEIGHTED-COVARIANCE FACTOR FCM ALGORITHM 

Although the Mahalanobis Distance (MD) maps all clusters 
to spheroids of the same size, it unfortunately makes the 
objective function “flat”. It is well-known that the MD is 
invariant to linear transformations. But, in the crisp case (the 
membership are crisp), the objective function is a constant 
regardless of how the data set is partitioned. If the memberships 
are fuzzy, the objective function is minimized with respect to 
 𝑢𝑖𝑗 subject to Eq. (2). Using a Lagrange multiplier, every point 

is equally shared by all clusters, which is not an interesting 
result. Therefore, the MD cannot be used directly in the FCM 
algorithm as pointed out in [3]. Indeed, we cannot introduce the 
covariance matrix between samples and centers in equation (1).  

For this reason, we introduce a factor weighted fuzzy c-
means clustering algorithm based on the covariance 
information. The proposed factor is given by: 

𝛼𝑗 = [∑ |𝑐𝑜𝑣(𝒄𝑗 , 𝒔𝑖)|𝑁
𝑖=1 ]

−1
  ∀ 𝑗 = 1 … K          (4) 

and represents the inverse of the sum of absolute covariance 
between all samples 𝒔𝑖 and the center 𝒄𝑗 of the cluster “j”. This 

factor is a measure of the collinearity. That means that if 𝒔𝑖 are 
scaled, the value of 𝛼𝑗 does not change. 

The proposed weighted-covariance factor FCM algorithm, 
that we will call FCM-R algorithm, has the same steps as the 
FCM algorithm, but the Eq. (3) in step 3 is replaced with the 
following relation: 

𝑢𝑖𝑗 = [∑ [
𝛼𝑗(𝒔𝑖−𝒄𝑗)𝑇(𝒔𝑖−𝒄𝑗) 

𝛼𝑙(𝒔𝑖−𝒄𝑙)𝑇(𝒔𝑖−𝒄𝑙) 
]

1

𝑚−1𝐾
𝑙=1 ]

−1

                   (5) 

IV. ANALYSIS OF THE FCM-R ALGORITHM BEHAVIOR 

Firstly, we compare the proposed FCM-R algorithm with 
FCM, GG, GK, FCM-M, FCM-CM, and FCM-SM algorithms 
on non-spherical structural clusters. 

A data set composed of 200 samples for the class c1 and 700 
samples for the class c2 is randomly generated using a two-
dimensional Gaussian distribution. The mean vector and the 

covariance matrix are m(1) = [3 ; 4] and σ(1) = [σ1
(1)

 0; 0  σ2
(1)

], 

with σ1
(1)

=0.5 and σ2
(1)

 = 1 for the first class, and m(2) = [0.5 ; 2] 

and σ(2) = [σ1
(2)

 0; 0  σ2
(2)

], with σ1
(2)

=2 and σ2
(2)

 = 0.2 for the 

second class. The generated two-dimensional data set, shown in 
Figure I(a), has superposed elliptical (non-spherical) structural 
clusters with unbalanced sizes. 

The above mentioned clustering algorithms were applied on 

this data set. Parameters chosen were: m=2, the number of 

clusters = 2, and ϵ = 10-6. The results of the classifications are 

depicted in Figures I(b) – I(h), the membership 𝑢𝑖2 with respect 

to the second class representing the background of each figure. 

Note that the center of the second class can be identified as the 

brightest point of the background. For each algorithm, we 

calculated the well-classification ratio after the defuzzification 

process, which consists in choosing the class with the highest 

membership value. The obtained results are presented in table I. 

TABLE I.  RATIOS OF WELL CLASSIFIED SAMPLES FOR DIFFERENT 

CLASSIFICATION ALGORITHMS ON THE DATA SET REPRESENTED IN FIGURE 1 

Algorithm The classification ratio (%) 

FCM 83.1 % 

GG  92.2% 

GK 75.1% 

FCM-M 61.7% 

FCM-SM 69.9% 

FCM-M 88.2% 

FCM-R 96.4% 

 

We deduce that non-spherical structural clusters are better 
classified by the FCM-R algorithm than the other algorithms 

Secondly, to confirm that the proposed FCM-R algorithm 
can cover both spherical and non-spherical (elliptical) structural 
clusters, we have studied the performance of the FCM and FCM-
R clustering algorithms when the geometry shape of two class 
in two-dimensional data set varies between the circle, horizontal 
ellipsoid and vertical ellipsoid. 

For this, we have generated several data sets by varying the 

ratios σ1
(1)

/ σ2
(1)

 and σ1
(2)

/ σ2
(2)

 independently for each class c1 

and c2. The mean vectors were also changed in order to keep the 
same superposition ratio of the two clusters. The sizes of classes 
were kept unchanged. The classes c1 and c2 vary from horizontal 

ellipsoid if σ1
(.)

/  σ2
(.)

 < 1 to vertical ellipsoid if σ1
(.)

/  σ2
(.)

 > 1, 

passing through circle (spherical) forms when σ1
(.)

/ σ2
(.)

 = 1. 

Figures II and III show the well-classification ratios of the 
FCM and FCM-R clustering algorithms according to the ratios 

σ1
(1)

/ σ2
(1)

 and σ1
(2)

/ σ2
(2)

, that is, according to the variation of the 

geometric shape of the clusters. The parameters were chosen the 
same as for the previous simulation. 
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(c) 
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(h) 

Fig. I. (a) Randomly generated data. “o” represents the 200 samples of the class c1 and “+” the 700 samples of the class c2. (b)-(h): Results of the classification 

methods: (b) FCM, (c) GG, (d) GK, (e) FCM-CM, (f) FCM-SM, (g) FCM-M, (h) FCM-R. Identified classes after defuzzification are also denoted with the 

same “o” and “+” symbols. The background represents the memberships 𝒖𝒊𝟐 with respect to the second class using a sepia tone colorization grayscale colormap.  
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If the two clusters have spherical shapes, the FCM algorithm 
gives the best classification percentage. However, for non-
spherical shapes, the accuracy of the classification decreases 
significantly. The FCM-R gives better classification ratios for 
both spherical and non-spherical structural clusters cases.  

V. BENCHMARK ON WELL-KNOWN DATA SETS 

We test here the performances of FCM, GK, GG, FCM-M, 
FCM-CM, FCM-SM, and FCM-R algorithms for three artificial 
and four real well-known data sets. The artificial data sets are 
DataSet-3-3, DataSet-4-3, and DataSet-5-2 [9]. These data sets 
are similar data sets generated by random generators. The real 
life data sets are Iris, Wisconsin Breast Cancer (WBCD), 
Wisconsin Diagnostic Breast Cancer (WDBC), and Wine [7], 
[8]. Information about data sets are shown in table II. 

Each classification algorithm was applied 100 times for the 
real data sets with random initializations. For the artificial data 
sets, data were generated 100 times and for each realization, all 
algorithms with random initializations were applied. Parameters 
chosen were: m=2, the number of clusters = 2, and ϵ = 10-6. Well 
classified data are transformed into well-classified ratios which 
are then weighted over the 100 realizations. Final results are 
shown in tables III and IV. 

TABLE II.  INFORMATION ABOUT THE USED DATA SETS 

Data set Attributes Classes Sample number 

Iris 4 3 150 (50 for each class) 

WDBC 30 2 569 (357 for c1, 212 for c2) 

WBCD 9 2 583 (444 for c1, 239 for c2) 

Wine 13 3 178 (59 for c1, 71 for c2, 48 

for c3) 

DataSet-3-3 3 3 150 (50 for each class) 

DataSet-4-3 3 4 400 (100 for each class) 

DataSet-5-2 2 5 500 (100 for each class) 

 

TABLE III.  MEAN RATIOS OF WELL CLASSIFIED SAMPLES OVER 100 

CLASSIFICATIONS FOR THE REAL DATA SETS 

Algorithm Iris WDBC WBDC Wine 

FCM 89.33% 84.53% 94.53% 68.52% 

GK  90.00% 72.20% 92.37% 60.97% 

GG 71.73% 80.57% 91.91% 61.04% 

FCM-M 89.32% 84.50% 73.16% 53.12% 

FCM-CM 89.33% 84.50% 95.44% 60.19% 

FCM-SM 89.33% 84.51% 76.32% 59.99% 

FCM-R 90.00% 88.18% 96.13% 71.32% 

 

The FCM-R gives the best result according to what is 
presented in table 3. For the Iris data set, the FCM-R algorithm 

gives 89.99% (≈  90.00%) which is an essential result. 

Regarding the second, third and fourth real data sets, the FCM-
R algorithm gives the highest numbers in three columns 
(88.18% in WDBC, 96.03% in WBDC and 68.58% in Wine). 
Concerning the artificial data sets, the FCM-R provides a good 
achievement since for DataSet-4-3 and DataSet-3-3 the results 
are the best ones, respectively 100% and 95.34%. Results for the 
DataSet-5-2 are better using the GK algorithm, however the 
FCM-R performs well enough. These results indicate that the 
performances of the proposed FCM-R algorithm are generally 
better for artificial and real well-known data sets. 
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Fig. II. The result of the FCM according to variation of the geometric shapes 

of the two clusters. 
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Fig. III. The result of the proposed FCM-R algorithm according to variation of 

the geometric shape of the two clusters. 
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TABLE IV.  MEAN RATIOS OF WELL CLASSIFIED SAMPLES ON ARTIFICIAL 

DATA GENERATED 100 TIMES 

Algorithm DataSet-3-3 DataSet-4-3 DataSet-5-2 

FCM 94.66% 100% 92.80% 

GK 91.33% 99.52% 93.44% 

GG 70.96% 48.98% 66.12% 

FCM-M 67.24% 48.19% 59.96% 

FCM-CM 69.98% 53.84% 59.49% 

FCM-SM 73.25% 51.55% 60.52% 

FCM-R 95.34% 100% 88.82% 

 

VI. APPLICATION ON REAL MIR SPECTRA 

Infrared spectroscopy allows to analyze plants samples and 
derived products. The classification of infrared spectra reflects 
the chemical similarity of plants in a cluster in comparison to 
one another [10]. We have tested the FCM-R algorithm for the 
classification of lignocellulosic biomass. 

In the first application, 16 samples of maize roots are 
considered. The samples come from two distinct parental lines 
(F2 and F292), each of these lines being completed with 4 
mutants. For F2 we have “the parent” and 4 mutants, the same 
for F292. This group of 10 samples was completed by 6 roots of 
hybrid maize G1 to G6. We have thus 3 classes (F2, F292, and 
G), the first and second being composed of 5 samples, and the 
third of 6 samples. 

In the second application, 12 samples of basal and apical 
levels of Miscanthus internodes from two distinct harvests, 
autumn 2007 and February 2008, are considered. We have thus 
2 classes (early and late) each one being composed of 6 samples. 

Spectra were acquired on raw samples (without any 
chemical pretreatment method) over the total spectral range of 
the Mid-Infrared (MIR) 400-4000 cm-1, using the Fourier 
transform infrared spectroscopy. The influence of preprocessing 
of spectra within the classical FCM was studied in [11]. The 
method of preprocessing used is the baseline removal followed 
by Standard Normal Variate (SNV). Table V shows the 
information of acquired spectra.  

We note that GK, GG, FCM-M, FCM-CM, and FCM-SM 
algorithms cannot be used for classification of high dimensional 
infrared spectra because the determinant calculation of large 
matrices (1869 x 1869) is computationally expensive and 
numerical solution may become unstable. Table V1 shows the 
classification results using the same parameters as previously 
(m=2, the number of clusters the expected one (see table V), and 
ϵ = 10-6). The FCM algorithm gives a ratio of well classified 
samples of 84.13% for the maize roots and 93.20% for the 
miscanthus internodes, while the proposed FCM-R algorithm 
gives respectively 84.88% and 98.10%. It turns out that the 
FCM-R also provides the best classification results. 

TABLE V.  INFORMATION ABOUT THE MIR SPECTRA RECORDED ON 

LIGNOCELLULOSIC BIOMASS 

Data Sets Attributes Classes Sample number 

Maize 1869 3 16 (5 for c1, 5 for c2, 6 

for c3) 

Miscanthus 1869 2 12 (6 for each class) 

 

 

TABLE VI.  RATIOS OF WELL CLASSIFIED LIGNOCELLULOSIC BIOMASS 

USING HIGH DIMENSIONAL REAL MIR SPECTRA 

Algorithm Maize Miscanthus 

FCM 84.13% 93.20% 

FCM-R 84.88% 98.10% 

 

VII. CONCLUSION 

The well-known FCM clustering algorithm based on 
Euclidean distance can only be used to classify spherical 
structural clusters. GK and GG algorithms were developed to 
detect non spherical structural clusters. However, the former 
needs additional constraints on fuzzy covariance matrix, the 
later can only be used for the data with multivariate Gaussian 
distribution. Three FCM clustering algorithms based on the 
Mahalanobis distance, called FCM-M, FCM-CM, and FCM-SM 
were proposed. However, the determinant calculation of large 
matrices for real life applications such as spectra restricts their 
use. 

In this paper we have proposed a weighted-covariance factor 
FCM algorithm, the FCM-R. The weighting factor is a measure 
of the collinearity between the center of a class and the samples 
and takes into account the compactness of samples in the 
clusters. The proposed FCM-R algorithm is robust, tolerating 
high dimensional data and unequal size of clusters. It is also able 
to well classify non-spherical structural clusters.  

Numerical examples show that FCM-R actually work 
generally better than FCM, GK, GG, FCM-M, FCM-CM, and 
FCM-SM. In addition, FCM-R gives the best performance 
among these algorithms on real well-known data sets (WDBC, 
WBDC, Wine, but also Iris) and can be successfully applied on 
high dimensional data. The results obtained for the classification 
of Mid-Infrared spectra acquired on lignocellulosic biomass 
show that the FCM-R algorithm has a better performance than 
the classical FCM based on the Euclidean distance. 
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