25 research outputs found

    Long-Term Morbidity and Health After Early Menopause Due to Oophorectomy in Women at Increased Risk of Ovarian Cancer:Protocol for a Nationwide Cross-Sectional Study With Prospective Follow-Up (HARMOny Study)

    Get PDF
    Background: BRCA1/2 mutation carriers are recommended to undergo risk-reducing salpingo-oophorectomy (RRSO) at 35 to 45 years of age. RRSO substantially decreases ovarian cancer risk, but at the cost of immediate menopause. Knowledge about the potential adverse effects of premenopausal RRSO, such as increased risk of cardiovascular disease, osteoporosis, cognitive dysfunction, and reduced health-related quality of life (HRQoL), is limited. Objective: The aim of this study is to assess the long-term health effects of premenopausal RRSO on cardiovascular disease, bone health, cognitive functioning, urological complaints, sexual functioning, and HRQoL in women with high familial risk of breast or ovarian cancer. Methods: We will conduct a multicenter cross-sectional study with prospective follow-up, nested in a nationwide cohort of women at high familial risk of breast or ovarian cancer. A total of 500 women who have undergone RRSO before 45 years of age, with a follow-up period of at least 10 years, will be compared with 250 women (frequency matched on current age) who have not undergone RRSO or who have undergone RRSO at over 55 years of age. Participants will complete an online questionnaire on lifestyle, medical history, cardiovascular risk factors, osteoporosis, cognitive function, urological complaints, and HRQoL. A full cardiovascular assessment and assessment of bone mineral density will be performed. Blood samples will be obtained for marker analysis. Cognitive functioning will be assessed objectively with an online neuropsychological test battery. Results: This study was approved by the institutional review board in July 2018. In February 2019, we included our first participant. As of November 2020, we had enrolled 364 participants in our study. Conclusions: Knowledge from this study will contribute to counseling women with a high familial risk of breast/ovarian cancer about the long-term health effects of premenopausal RRSO. The results can also be used to offer health recommendations after RRSO

    Glucose transporter-1 deficiency syndrome: the expanding clinical and genetic spectrum of a treatable disorder

    Get PDF
    Glucose transporter-1 deficiency syndrome is caused by mutations in the SLC2A1 gene in the majority of patients and results in impaired glucose transport into the brain. From 2004-2008, 132 requests for mutational analysis of the SLC2A1 gene were studied by automated Sanger sequencing and multiplex ligation-dependent probe amplification. Mutations in the SLC2A1 gene were detected in 54 patients (41%) and subsequently in three clinically affected family members. In these 57 patients we identified 49 different mutations, including six multiple exon deletions, six known mutations and 37 novel mutations (13 missense, five nonsense, 13 frame shift, four splice site and two translation initiation mutations). Clinical data were retrospectively collected from referring physicians by means of a questionnaire. Three different phenotypes were recognized: (i) the classical phenotype (84%), subdivided into early-onset (<2 years) (65%) and late-onset (18%); (ii) a non-classical phenotype, with mental retardation and movement disorder, without epilepsy (15%); and (iii) one adult case of glucose transporter-1 deficiency syndrome with minimal symptoms. Recognizing glucose transporter-1 deficiency syndrome is important, since a ketogenic diet was effective in most of the patients with epilepsy (86%) and also reduced movement disorders in 48% of the patients with a classical phenotype and 71% of the patients with a non-classical phenotype. The average delay in diagnosing classical glucose transporter-1 deficiency syndrome was 6.6 years (range 1 month-16 years). Cerebrospinal fluid glucose was below 2.5 mmol/l (range 0.9-2.4 mmol/l) in all patients and cerebrospinal fluid : blood glucose ratio was below 0.50 in all but one patient (range 0.19-0.52). Cerebrospinal fluid lactate was low to normal in all patients. Our relatively large series of 57 patients with glucose transporter-1 deficiency syndrome allowed us to identify correlations between genotype, phenotype and biochemical data. Type of mutation was related to the severity of mental retardation and the presence of complex movement disorders. Cerebrospinal fluid : blood glucose ratio was related to type of mutation and phenotype. In conclusion, a substantial number of the patients with glucose transporter-1 deficiency syndrome do not have epilepsy. Our study demonstrates that a lumbar puncture provides the diagnostic clue to glucose transporter-1 deficiency syndrome and can thereby dramatically reduce diagnostic delay to allow early start of the ketogenic die

    Selective C-Rel Activation via Malt1 Controls Anti-Fungal TH-17 Immunity by Dectin-1 and Dectin-2

    Get PDF
    C-type lectins dectin-1 and dectin-2 on dendritic cells elicit protective immunity against fungal infections through induction of TH1 and TH-17 cellular responses. Fungal recognition by dectin-1 on human dendritic cells engages the CARD9-Bcl10-Malt1 module to activate NF-κB. Here we demonstrate that Malt1 recruitment is pivotal to TH-17 immunity by selective activation of NF-κB subunit c-Rel, which induces expression of TH-17-polarizing cytokines IL-1β and IL-23p19. Malt1 inhibition abrogates c-Rel activation and TH-17 immunity to Candida species. We found that Malt1-mediated activation of c-Rel is similarly essential to induction of TH-17-polarizing cytokines by dectin-2. Whereas dectin-1 activates all NF-κB subunits, dectin-2 selectively activates c-Rel, signifying a specialized TH-17-enhancing function for dectin-2 in anti-fungal immunity by human dendritic cells. Thus, dectin-1 and dectin-2 control adaptive TH-17 immunity to fungi via Malt1-dependent activation of c-Rel

    Fucose-specific DC-SIGN signalling directs T helper cell type-2 responses via IKKε- and CYLD-dependent Bcl3 activation

    No full text
    Carbohydrate-specific signalling through DC-SIGN provides dendritic cells with plasticity to tailor immunity to the nature of invading microbes. Here we demonstrate that recognition of fucose-expressing extracellular pathogens like Schistosoma mansoni and Helicobacter pylori by DC-SIGN favors T helper cell type-2 (TH2) responses via activation of atypical NF-κB family member Bcl3. Crosstalk between TLR and DC-SIGN signalling results in TLR-induced MK2-mediated phosphorylation of LSP1, associated with DC-SIGN, upon fucose binding. Subsequently, IKKε and CYLD are recruited to phosphorylated LSP1. IKKε activation is pivotal for suppression of CYLD deubiquitinase activity and subsequent nuclear translocation of ubiquitinated Bcl3. Bcl3 activation represses TLR-induced proinflammatory cytokine expression, while enhancing interleukin-10 (IL-10) and TH2-attracting chemokine expression, shifting TH differentiation from TH1 to TH2 polarization. Thus, DC-SIGN directs adaptive TH2 immunity to fucose-expressing pathogens via an IKKε-CYLD-dependent signalling pathway leading to Bcl3 activation, which might be targeted in vaccination strategies or to prevent aberrant inflammation and allerg

    Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1 beta via a noncanonical caspase-8 inflammasome

    No full text
    Production of the proinflammatory cytokine interleukin 1 beta (IL-1 beta) by dendritic cells is crucial in host defense. Here we identify a previously unknown role for dectin-1 in the activation of a noncanonical caspase-8 inflammasome in response to fungi and mycobacteria. Dectin-1 induced both the production and maturation of IL-1 beta through signaling routes mediated by the kinase Syk. Whereas the CARD9-Bcl-10-MALT1 scaffold directed IL1B transcription, the recruitment of MALT1-caspase-8 and ASC into this scaffold was crucial for processing of pro-IL-1 beta by caspase-8. In contrast to activation of the canonical caspase-1 inflammasome, which requires additional activation of cytosolic receptors, activation of the noncanonical caspase-8 inflammasome was independent of pathogen internalization. Thus, dectin-1 acted as an extracellular sensor for pathogens that induced both IL-1 beta production and maturation through a noncanonical caspase-8-dependent inflammasome for protective immunit

    Fungal engagement of the C-type lectin mincle suppresses dectin-1-induced antifungal immunity

    Get PDF
    Recognition of fungal pathogens by C-type lectin receptor (CLR) dectin-1 on human dendritic cells is essential for triggering protective antifungal TH1 and TH17 immune responses. We show that Fonsecaea monophora, a causative agent of chromoblastomycosis, a chronic fungal skin infection, evades these antifungal responses by engaging CLR mincle and suppressing IL-12, which drives TH1 differentiation. Dectin-1 triggering by F. monophora activates transcription factor IRF1, which is crucial for IL12A transcription via nucleosome remodeling. However, simultaneous F. monophora binding to mincle induces an E3 ubiquitin ligase Mdm2-dependent degradation pathway, via Syk-CARD9-mediated PKB signaling, that leads to loss of nuclear IRF1 activity, hence blocking IL12A transcription. The absence of IL-12 leads to impaired TH1 responses and promotes TH2 polarization. Notably, mincle is similarly exploited by other chromoblastomycosis-associated fungi to redirect TH responses. Thus, mincle is a fungal receptor that can suppress antifungal immunity and, as such, is a potential therapeutic targe

    Progression from suspected to definite systemic sclerosis and the role of anti-topoisomerase I antibodies

    Get PDF
    INTRODUCTION: Early diagnosis of systemic sclerosis (SSc) is important to start therapeutic interventions timely. Important risk factors for progression to SSc are the SSc-specific autoantibodies, of whom anti-centromere antibodies (ACA) and anti-topoisomerase I antibodies (ATA) are the most frequent. ATA is associated with a severe disease course. A more detailed characterisation of the ATA-response in SSc might increase insights in preclinical disease stages and improve prognostication. To address this we identified all patients with suspected very early ATA-positive SSc, defined as all patients who are ATA-positive not fulfilling American College of Rheumatology (ACR)/European Alliance of Associations for Rheumatology (EULAR) 2013 criteria, in the Leiden Combined Care in Systemic Sclerosis (CCISS)-cohort and found very low numbers. METHODS: This triggered us to search the literature on the ATA prevalence in patients with suspected very early SSc and contribution of the SSc-specific autoantibodies to progression from suspected very early to definite SSc. To increase insights on the ATA-response in suspected very early SSc, we then evaluated the association between the ATA-response and time between onset of Raynaud's phenomenon (RP) and first non-RP symptom, as a proxy for progressing to definite SSc, in all patients with ATA-positive SSc from the Leiden CCISS-cohort. RESULTS: In short, included studies show that prevalence of ATA is much lower in suspected very early SSc than in populations fulfilling ACR/EULAR 2013 criteria. After 1-15 years of follow-up, only 52% of the patients with suspected very early SSc progress to definite SSc. ATA-IgG levels tend to be higher in patients with ATA-positive SSc with more rapid disease progression. CONCLUSION: Although a role of ATA in disease progression is suggested, more studies on the ATA response in suspected very early SSc are warranted

    Frequencies and clinical associations of myositis-related antibodies in The Netherlands: A one-year survey of all Dutch patients

    No full text
    Idiopathic inflammatory myopathies (IIM) are a heterogeneous group of connective tissue diseases, collectively known as myositis. Diagnosis of IIM is challenging while timely recognition of an IIM is of utter importance considering treatment options and otherwise irreversible (severe) long-term clinical complications. With the EULAR/ACR classification criteria (2017) considerable advancement has been made in the diagnostic workup of IIM. While these criteria take into account clinical parameters as well as presence of one autoantibody, anti-Jo-1, several autoantibodies are associated with IIM and are currently evaluated to be incorporated into classification criteria. As individual antibodies occur at low frequency, the development of line blots allowing multiplex antibody analysis has improved laboratory diagnostics for IIM. The Euroline myositis line-blot assay (Euroimmun) allows screening and semi-quantitative measurement for 15 autoantibodies, i.e. myositis specific antibodies (MSA) to SRP, EJ, OJ, Mi-2α, Mi-2β, TIF1-γ, MDA5, NXP2, SAE1, PL-12, PL-7, Jo-1 and myositis associated antibodies (MAA) to Ku, PM/Scl-75 and PM/Scl-100. To evaluate the clinical significance of detection and levels of these autoantibodies in the Netherlands, a retrospective analysis of all Dutch requests for extended myositis screening within a 1 year period was performed. A total of 187 IIM patients and 632 non-IIM patients were included. We conclude that frequencies of MSA and MAA observed in IIM patients in a routine diagnostic setting are comparable to cohort-based studies. Weak positive antibody levels show less diagnostic accuracy compared to positive antibody levels, except for anti-NXP2. Known associations between antibodies and skin involvement (anti-MDA5, anti-TIF1-γ), lung involvement (anti-Jo-1), and malignancy (anti-TIF1-γ) were confirmed in our IIM study population. The availability of multiplex antibody analyses will facilitate inclusion of additional autoantibodies in clinical myositis guidelines and help to accelerate diagnosing IMM with rare but specific antibodies
    corecore