23 research outputs found

    Orbital-scale environmental and climatic changes recorded in a new ∼200,000-year-long multiproxy sedimentary record from Padul, southern Iberian Peninsula

    Get PDF
    Padul is one of the few wetland sites in southern Europe and the Mediterranean region that exhibits an unusually large temporal span (>100 kyr) and continuous Quaternary sedimentary record. Previous core-based studies from Padul yielded paleoecological datasets (i.e., pollen and organic geochemistry), but with a poor age control that resulted in rather arbitrary climate inferences. Therefore, precise age control and a multidisciplinary approach is necessary to understand long-term regional environmental and climate change and the associated local response of the Padul wetland environment. Here we present a new long sediment record (Padul-15-05) from this wetland in the southern Iberian Peninsula with the aim of improving the age control of the sedimentary sequence and carrying out up-to-date high-resolution multiproxy analyses. In this study the age control is based on 61 AMS radiocarbon dates for the last ca. 50 kyr BP and on the extent of amino acid racemization (AAR) in mollusc shells extending back ∼118 kyr BP. No numerical ages are available for the bottom part of the core but the sediment accumulation rates (SAR) and the cyclostratigraphic analysis of the multiproxy data suggest that the core preserves a continuous record of the last ∼197 kyr (from late MIS 7 to present) with millennial-scale time resolution. Sedimentological (lithology, magnetic susceptibility, XRD, color), geochemical (XRF, TOC, C/N, % carbonate content) and paleontological (pollen, charophytes, gastropods) data show co-varying cyclical paleoenvironmental changes linked to orbital-scale climatic variability. Silicon, magnetic susceptibility (MS) and total organic carbon (TOC) data show periodicities between ∼26.2–19.6 kyr linked to insolation, which is strongly dominated by precession cycles at this latitude. High values of Si and MS data have been related to high siliciclastic/detrital input from Sierra Nevada range during minima in insolation due to enhanced soil weathering/erosion during regional aridity and lower forest cover recorded by the arboreal pollen, which could also be favored by a minor biogenic productivity. In addition, warm climate conditions during maxima in insolation mostly resulted in negative precipitation/evapotranspiration balance and low lake levels, while cold glacial and stadial periods were mainly characterized by positive precipitation/evapotranspiration balance, and therefore, high lake levels. The improved chronology of the Padul sedimentary sequence along with a multiproxy study permitted us to better relate environmental and vegetation changes to climatic events and to demonstrate how both local (i.e., lake level, sedimentation) and regional (i.e., vegetation) environments responded to orbital-scale climate changes

    A Continuous 250,000 Yr Record of Oxygen and Carbon Isotopes in Ostracode and Bulk-Sediment Carbonate from Bear Lake, Utah-Idaho

    Get PDF
    Oxygen and carbon isotopes from a continuous, 120-m-long, carbonate-rich core from Bear Lake, Utah-Idaho, document dramatic fluctuations in the hydrologic budget of the lake over the last 250,000 yr. Isotopic analyses of bulk sediment samples capture millennialscale variability. Ostracode calcite was analyzed from 78 levels, mainly from the upper half of the core where valves are better preserved, to compare the isotopic value of purely endogenic carbonate with the bulk sediment, which comprises both endogenic and detrital components. The long core exhibits three relatively brief intervals with abundant endogenic aragonite (50±10%) and enriched δ18O and δ13C. These intervals are interpreted as warm/dry periods when the lake retracted into a topographically closed basin. We correlate these intervals with the interglacial periods of marine oxygen-isotope stages 1, 5e, and 7a, consistent with the presently available geochronological control. During most of the time represented by the core, the lake was fresher than the modern lake, as evidenced by depleted δ18O and δ13C in bulk-sediment carbonate

    Late Pleistocene (Ois 3) Paleoenvironmental Reconstruction for the Térapa Vertebrate Site, Northcentral Sonora, Mexico, Based on Stable Isotopes and Autecology of Ostracodes

    No full text
    The Térapa fossil vertebrate site, northcentral Sonora, Mexico, provides a rare opportunity to study the paleoenvironmental conditions present in northwestern Mexico during mid-Oxygen Isotope Stage (OIS) 3. Ostracode faunal assemblages and stable oxygen (δ18O) and stable carbon (δ13C) isotope values from ostracode calcite were used to reconstruct the seasonality of precipitation and vegetation cover at Térapa at 40-43 ka. The ostracode fauna was a non-analogue mix of temperate and tropical ostracode species composed of 13 species from 12 genera. The nearctic ostracodes Fabaeformiscandona caudata, Physocypria pustulosa, Cypridopsis vidua and the cosmopolitan ostracode Darwinula stevensoni dominate the assemblage. Two tropical ostracode genera, Chlamydotheca arcuata and Stenocypris sp., were present throughout the deposit and indicate that mean monthly summer temperatures were probably no more than 4°C to 6°C cooler than at present, based on available ecological information. Winter precipitation dominated the hydrologic cycle as evidenced by low ostracode δ18O values (-6‰ to -8‰ VPDB). Low ostracode δ13C values (-7‰ to -8‰ VPDB) suggest that local vegetation was dominated by C3 plants. A previous tooth enamel-based paleoenvironmental reconstruction at the same site favored a summer-dominated or evaporative hydrology and abundant C4 vegetation. The Térapa megafauna site exemplifies the need for multi-indicator paleoclimate reconstructions in desert environments where marked differences in the seasonality of precipitation and vegetation cover may occur

    Amino acid geochronology of individual foraminifer (Pulleniatina obliquiloculata) tests, north Queensland margin, Australia: A new approach to correlating and dating Quaternary tropical marine sediment cores

    Get PDF
    [1] In this study, we demonstrate the utility of amino acid geochronology based on single-foraminiferal tests in Quaternary sediment cores from the Queensland margin, Australia. The large planktonic foraminifer Pulleniatina obliquiloculata is ubiquitous in shelf, slope, and basin sediments of north Queensland as well as pantropical oceans. Fossil tests are resistant to dissolution, and retain substantial concentrations of amino acids (2–4 nmol mg−1 of shell) over hundreds of thousands of years. Amino acid D and L isomers of aspartic acid (Asp) and glutamic acid (Glu) were separated using reverse phase chromatography, which is sensitive enough to analyze individual foraminifera tests. In all, 462 Pulleniatina tests from 80 horizons in 11 cores exhibit a systematic increase in D/L ratios down core. D/L ratios were determined in 32 samples whose ages are known from AMS 14C analyses. In all cases, the Asp and Glu D/L ratios are concordant with 14C age. D/L ratios of equal-age samples are slightly lower for cores taken from deeper water sites, reflecting the sensitivity of the rate of racemization to bottom water temperature. Beyond the range of 14C dating, previously identified marine oxygen-isotope stage boundaries provide approximate ages of the sediments up to about 500,000 years. For this longer time frame, D/L ratios also vary systematically with isotope-correlated ages. The rate of racemization for Glu and Asp was modeled using power functions. These equations can be used to estimate ages of samples from the Queensland margin extending back at least 500,000 years. This analytical approach provides new opportunities for geochronological control necessary to understand fundamental sedimentary processes affecting a wide range of marine environments

    Comparative Dating of a Bison-Bearing Late-Pleistocene Deposit, Térapa, Sonora, Mexico

    No full text
    A recently discovered Bison-bearing fossil locality at Térapa, Sonora, Mexico, had previously been dated to 440 ± 130 ka using whole rock 40Ar/39Ar on a basalt flow that impounds the deposit. This age is considerably older than the accepted age of about 240-160 ka for the migration of Bison into greater North America. The Térapa deposit also contains a mixture of fossils from extralimital or extinct tropical animals and temperate animals. Constraining the age of the deposit is critical to interpret the paleontologic and paleoclimatologic implications of this unique Sonoran fossil locality. Three additional geochronological methods have been applied to this deposit (infrared stimulated luminescence (IRSL), amino acid racemization (AAR), and radiocarbon) and the data from the original 40Ar/39Ar age were revisited. The IRSL data suggest that the impounding basalt flow and the sediments that abut it were emplaced 43 ka ago and that the oldest sediments were deposited shortly after. Two radiocarbon ages suggest the fossiliferous sediments were emplaced by 42 ka. Effective diagenetic temperatures inferred from the AAR results, combined with AAR data from a similar-age deposit in southern Arizona, are in accordance with the 40-43 ka age estimates. For the AAR results to corroborate the 40Ar/39Ar age, the effective diagenetic temperature for the area would need to be approximately 3 °C, which is unrealistically low for northern Mexico. The new geochronological results suggest the Térapa deposit and fossils are 40-43 ka old. The anomalously old 40Ar/39Ar age for the impounding basalt is probably the result of low 40Ar* concentrations and inherited 40Ar
    corecore