59 research outputs found

    2009 Pandemic Influenza A (H1N1) Virus Outbreak and Response – Rwanda, October, 2009–May, 2010

    Get PDF
    BACKGROUND: In October 2009, the first case of pandemic influenza A(H1N1)pdm09 (pH1N1) was confirmed in Kigali, Rwanda and countrywide dissemination occurred within several weeks. We describe clinical and epidemiological characteristics of this epidemic. METHODS: From October 2009 through May 2010, we undertook epidemiologic investigations and response to pH1N1. Respiratory specimens were collected from all patients meeting the WHO case definition for pH1N1, which were tested using CDC's real time RT-PCR protocol at the Rwandan National Reference Laboratory (NRL). Following documented viral transmission in the community, testing focused on clinically severe and high-risk group suspect cases. RESULTS: From October 9, 2009 through May 31, 2010, NRL tested 2,045 specimens. In total, 26% (n = 532) of specimens tested influenza positive; of these 96% (n = 510) were influenza A and 4% (n = 22) were influenza B. Of cases testing influenza A positive, 96.8% (n = 494), 3% (n = 15), and 0.2% (n = 1) were A(H1N1)pdm09, Seasonal A(H3) and Seasonal A(non-subtyped), respectively. Among laboratory-confirmed cases, 263 (53.2%) were children <15 years and 275 (52%) were female. In total, 58 (12%) cases were hospitalized with mean duration of hospitalization of 5 days (Range: 2-15 days). All cases recovered and there were no deaths. Overall, 339 (68%) confirmed cases received oseltamivir in any setting. Among all positive cases, 26.9% (143/532) were among groups known to be at high risk of influenza-associated complications, including age <5 years 23% (122/532), asthma 0.8% (4/532), cardiac disease 1.5% (8/532), pregnancy 0.6% (3/532), diabetes mellitus 0.4% (2/532), and chronic malnutrition 0.8% (4/532). CONCLUSIONS: Rwanda experienced a PH1N1 outbreak which was epidemiologically similar to PH1N1 outbreaks in the region. Unlike seasonal influenza, children <15 years were the most affected by pH1N1. Lessons learned from the outbreak response included the need to strengthen integrated disease surveillance, develop laboratory contingency plans, and evaluate the influenza sentinel surveillance system

    Models for short term malaria prediction in Sri Lanka

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria in Sri Lanka is unstable and fluctuates in intensity both spatially and temporally. Although the case counts are dwindling at present, given the past history of resurgence of outbreaks despite effective control measures, the control programmes have to stay prepared. The availability of long time series of monitored/diagnosed malaria cases allows for the study of forecasting models, with an aim to developing a forecasting system which could assist in the efficient allocation of resources for malaria control.</p> <p>Methods</p> <p>Exponentially weighted moving average models, autoregressive integrated moving average (ARIMA) models with seasonal components, and seasonal multiplicative autoregressive integrated moving average (SARIMA) models were compared on monthly time series of district malaria cases for their ability to predict the number of malaria cases one to four months ahead. The addition of covariates such as the number of malaria cases in neighbouring districts or rainfall were assessed for their ability to improve prediction of selected (seasonal) ARIMA models.</p> <p>Results</p> <p>The best model for forecasting and the forecasting error varied strongly among the districts. The addition of rainfall as a covariate improved prediction of selected (seasonal) ARIMA models modestly in some districts but worsened prediction in other districts. Improvement by adding rainfall was more frequent at larger forecasting horizons.</p> <p>Conclusion</p> <p>Heterogeneity of patterns of malaria in Sri Lanka requires regionally specific prediction models. Prediction error was large at a minimum of 22% (for one of the districts) for one month ahead predictions. The modest improvement made in short term prediction by adding rainfall as a covariate to these prediction models may not be sufficient to merit investing in a forecasting system for which rainfall data are routinely processed.</p

    Attrition, physical integrity and insecticidal activity of long-lasting insecticidal nets in sub-Saharan Africa and modelling of their impact on vectorial capacity

    Get PDF
    Long-lasting insecticidal nets (LLINs) are the primary malaria prevention and control intervention in many parts of sub-Saharan Africa. While LLINs are expected to last at least 3 years under normal use conditions, they can lose effectiveness because they fall out of use, are discarded, repurposed, physically damaged, or lose insecticidal activity. The contributions of these different interrelated factors to durability of nets and their protection against malaria have been unclear.; Starting in 2009, LLIN durability studies were conducted in seven countries in Africa over 5 years. WHO-recommended measures of attrition, LLIN use, insecticidal activity, and physical integrity were recorded for eight different net brands. These data were combined with analyses of experimental hut data on feeding inhibition and killing effects of LLINs on both susceptible and pyrethroid resistant malaria vectors to estimate the protection against malaria transmission-in terms of vectorial capacity (VC)-provided by each net cohort over time. Impact on VC was then compared in hypothetical scenarios where one durability outcome measure was set at the best possible level while keeping the others at the observed levels.; There was more variability in decay of protection over time by country than by net brand for three measures of durability (ratios of variance components 4.6, 4.4, and 1.8 times for LLIN survival, use, and integrity, respectively). In some countries, LLIN attrition was slow, but use declined rapidly. Non-use of LLINs generally had more effect on LLIN impact on VC than did attrition, hole formation, or insecticide loss.; There is much more variation in LLIN durability among countries than among net brands. Low levels of use may have a larger impact on effectiveness than does variation in attrition or LLIN degradation. The estimated entomological effects of chemical decay are relatively small, with physical decay probably more important as a driver of attrition and non-use than as a direct cause of loss of effect. Efforts to maximize LLIN impact in operational settings should focus on increasing LLIN usage, including through improvements in LLIN physical integrity. Further research is needed to understand household decisions related to LLIN use, including the influence of net durability and the presence of other nets in the household

    Les cédéroms d’apprentissage du français langue étrangère : une opportunité pour développer les compétences orales ?

    No full text
    Cet article présente la méthodologie et les résultats d'un travail d'expertise réalisé en tant qu'"utilisateurs-découvreurs-critiques" de CDroms d'apprentissage du français langue étrangère, avec un focus sur les produits destinés à des apprenants de niveau intermédiaire et visant explicitement à développer les compétences de compréhension et de production orales. Après un bref tour d'horizon des produits existant sur le marché, la notion de "compétences orales" est développée et appliquée dans l'élaboration d'une grille d'évaluation des activités de compréhension et de production orales proposées dans les CDroms sélectionnés. Les résultats de l'analyse montrent que la compréhension peut-être fortement améliorée par l'utilisation des CDroms, mais pointent également les limites de l'outil. Ils encouragent à exercer en classe ce qui ne peut l'être avec une machine, et à faire de ce lieu un espace privilégié où l'apprenant devient auteur-acteur de sa parole personnelle
    • …
    corecore