6 research outputs found

    Biopolymer Molecular Weight Can Modulate the Wound Healing Efficacy of Multivalent Sonic Hedgehog–Hyaluronic Acid Conjugates

    No full text
    There is a clinical need for new therapeutics to improve healing of chronic impaired wounds. Thus, we investigated how biopolymer conjugation could be used to improve the wound healing performance of a key growth factor for tissue regeneration: Sonic hedgehog (Shh). We generated two multivalent Shh conjugates (mvShh) using hyaluronic acid with two different MWs, which exhibited equivalent potency and proteolytic protection <i>in vitro</i>. Using db/db diabetic mice, we showed that mvShh made with smaller HyA MW resulted in more rapid and robust neovascularization compared to mvShh made with larger MW HyA. Further, smaller mvShh conjugates resulted in faster wound resolution compared to the unconjugated Shh. This study is the first to show how the wound healing efficacy of multivalent protein–polymer conjugates is sensitive to the polymer MW, and our findings suggest that this parameter could be used to enhance the efficacy of growth factor conjugates

    MTORC1-mediated NRBF2 phosphorylation functions as a switch for the class III PtdIns3K and autophagy

    No full text
    NRBF2/Atg38 has been identified as the fifth subunit of the macroautophagic/autophagic class III phosphatidylinositol 3-kinase (PtdIns3K) complex, along with ATG14/Barkor, BECN1/Vps30, PIK3R4/p150/Vps15 and PIK3C3/Vps34. However, its functional mechanism and regulation are not fully understood. Here, we report that NRBF2 is a fine tuning regulator of PtdIns3K controlled by phosphorylation. Human NRBF2 is phosphorylated by MTORC1 at S113 and S120. Upon nutrient starvation or MTORC1 inhibition, NRBF2 phosphorylation is diminished. Phosphorylated NRBF2 preferentially interacts with PIK3C3/PIK3R4. Suppression of NRBF2 phosphorylation by MTORC1 inhibition alters its binding preference from PIK3C3/PIK3R4 to ATG14/BECN1, leading to increased autophagic PtdIns3K complex assembly, as well as enhancement of ULK1 protein complex association. Consequently, NRBF2 in its unphosphorylated form promotes PtdIns3K lipid kinase activity and autophagy flux, whereas its phosphorylated form blocks them. This study reveals NRBF2 as a critical molecular switch of PtdIns3K and autophagy activation, and its on/off state is precisely controlled by MTORC1 through phosphorylation
    corecore