62 research outputs found

    Options for a new integrated natural resources monitoring framework for Wales. Phase 1 project report

    Get PDF
    Healthy natural resources underpin significant economic sectors in Wales including agriculture, fisheries, tourism and forestry, they also make a significant contribution across Cabinet policies including the health and well-being agenda. In order to develop policies that build social, economic and environmental resilience and to evaluate policy implementation, a robust natural resources monitoring framework is required. Current monitoring activities are of varying quality, not sufficiently aligned to the new legislative and policy landscape, disjointed and when considered as a whole, potentially not as cost-effective as they could be. This project was tasked with identifying options and developing recommendations for an integrated natural resources monitoring framework for Wales reflecting the ambitions and integrating principles of the Environment Act and Well Being of Future Generations Act. The monitoring community, the Welsh Government and Natural Resources Wales Core Evidence Group, the project team, stakeholders and partners, have agreed on a set of recommendations

    Major surgery induces acute changes in measured DNA methylation associated with immune response pathways

    Get PDF
    Surgery is an invasive procedure evoking acute inflammatory and immune responses that can influence risk for postoperative complications including cognitive dysfunction and delirium. Although the specific mechanisms driving these responses have not been well-characterized, they are hypothesized to involve the epigenetic regulation of gene expression. We quantified genome-wide levels of DNA methylation in peripheral blood mononuclear cells (PBMCs) longitudinally collected from a cohort of elderly patients undergoing major surgery, comparing samples collected at baseline to those collected immediately post-operatively and at discharge from hospital. We identified acute changes in measured DNA methylation at sites annotated to immune system genes, paralleling changes in serum-levels of markers including C-reactive protein (CRP) and Interleukin 6 (IL-6) measured in the same individuals. Many of the observed changes in measured DNA methylation were consistent across different types of major surgery, although there was notable heterogeneity between surgery types at certain loci. The acute changes in measured DNA methylation induced by surgery are relatively stable in the post-operative period, generally persisting until discharge from hospital. Our results highlight the dramatic alterations in gene regulation induced by invasive surgery, primarily reflecting upregulation of the immune system in response to trauma, wound healing and anaesthesia.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.This work was supported by the Medical Research Council (Grant MR/M008924/1), the Sasakawa Foundation (Butterfield Awards B108) and the UK National Institute for Health Research (NIHR) Exeter Clinical Research Facility (Exeter CRF).Published version, Accepted version, Submitted versio

    Plant and soil communities are associated with the response of soil water repellency to environmental stress

    Get PDF
    A warming climate and expected changes in average and extreme rainfall emphasise the importance of understanding how the land surface routes and stores surface water. The availability and movement of water within an ecosystem is a fundamental control on biological and geophysical activity, and influences many climatic feedbacks. A key phenomenon influencing water infiltration into the land surface is soil hydrophobicity, or water repellency. Despite repellency dictating the speed, volume and pattern of water infiltration, there is still major uncertainty over whether this critical hydrological process is biologically or physicochemically controlled. Here we show that soil water repellency is likely driven by changes in the plant and soil microbial communities in response to environmental stressors. We carried out a field survey in the summers of 2013 to 2016 in a variety of temperate habitats ranging across arable, grassland, forest and bog sites. We found that moderate to extreme repellency occurs in 68% of soils at a national scale in temperate ecosystems, with 92% showing some repellency. Taking a systems approach, we show that a wetter climate and low nutrient availability alter plant, bacterial and fungal community structure, which in turn are associated with increased soil water repellency across a large-scale gradient of soil, vegetation and land-use. The stress tolerance of the plant community and associated changes in soil microbial communities were more closely linked to changes in repellency than soil physicochemical properties. Our results indicate that there are consistent responses to diverse ecosystem stresses that will impact plant and microbial community composition, soil properties, and hydrological behaviour. We suggest that the ability of a biological community to induce such hydrological responses will influence the resilience of the whole ecosystem to environmental stress. This highlights the crucial role of above-belowground interactions in mediating climatic feedbacks and dictating ecosystem health

    Leaf dry matter content is better at predicting above-ground net primary production than specific leaf area

    Get PDF
    1. Reliable modelling of above-ground Net Primary Production (aNPP) at fine resolution is a significant challenge. A promising avenue for improving process models is to include response and effect trait relationships. However, uncertainties remain over which leaf traits are correlated most strongly with aNPP. 2. We compared abundance-weighted values of two of the most widely used traits from the Leaf Economics Spectrum (Specific Leaf Area and Leaf Dry Matter Content) with measured aNPP across a temperate ecosystem gradient. 3. We found that Leaf Dry Matter Content (LDMC) as opposed to Specific Leaf Area (SLA) was the superior predictor of aNPP (R2=0.55). 4. Directly measured in situ trait values for the dominant species improved estimation of aNPP significantly. Introducing intra-specific trait variation by including the effect of replicated trait values from published databases did not improve the estimation of aNPP. 5. Our results support the prospect of greater scientific understanding for less cost because LDMC is much easier to measure than SLA

    Fifty years of reduction in sulphur deposition drives recovery in soil pH and plant communities

    Get PDF
    1. Sulphur deposition through rainfall has led to species loss and ecosystem degradation globally, and across Europe huge reductions in sulphur emissions since the 1970s were expected to promote the recovery of acidified ecosystems. However, the rate and ecological impact of recovery from acidification in terrestrial ecosystems is still unclear as is the influence of management and climate, as to date there has been no long-term spatially extensive evaluation of these changes. 2. Here, we present data from thousands of sites across Great Britain (pH range 3.3–8.7) surveyed repeatedly from 1978–2019 and assess change in soil pH and plant acidity preference (Ellenberg R) in response to atmospheric deposition of sulphur and nitrogen. We analyse change in grasslands managed for pasture, referred to as high-intensity habitats, and compare to seminatural habitats comprising rough grassland, broadleaved woodland, bog and heathland, referred to as low-intensity habitats. 3. Soil pH increased from 1978 to 2007 but then decreased between 2007 and 2019, resulting in a net increase of ~0.2 pH units in low-intensity habitats but no change in high-intensity habitats. The community average Ellenberg R increased in seminatural habitats by ~0.2 units but remained stable in intensive grasslands. 4. In seminatural habitats, but not intensive grasslands, these changes in plant community composition were associated with the soil pH changes which were in turn linked to decreasing sulphur deposition and differences in rainfall. 5. Nitrogen deposition, which was relatively stable over the survey period, showed no additional effect upon soil acidity once sulphur deposition was accounted for. 6. Synthesis: Our results provide conclusive evidence that reductions in acid emissions are stimulating the gradual recovery of chronically acidified terrestrial ecosystems at a whole-country scale, while also suggesting this recovery is being compromised by changing climate and land management

    A diversity of diversities: do complex environmental effects underpin associations between below‐ and above‐ground taxa?

    Get PDF
    •1. To predict how biodiversity will respond to global change, it is crucial to understand the relative roles of abiotic drivers and biotic interactions in driving associations between the biodiversity of disparate taxa. It is particularly challenging to understand diversity–diversity links across domains and habitats, because data are rarely available for multiple above- and below-ground taxa across multiple sites. •2. Here, we analyse data from a unique biodiversity data set gathered across a variety of oceanic temperate terrestrial habitats in Wales, comprising 300 sites with co-located soil microbial, plant, bird and pollinator surveys along with climate and soil physicochemical information. Soil groups are analysed using metabarcoding of the 16S, ITS1 and 18S DNA regions, allowing in-depth characterisation of microbial and soil animal biodiversity. •3. We explore biodiversity relationships along three aspects of community composition: First, we assess correlation between the alpha diversity of different groups. Second, we assess whether biotic turnover between sites is correlated across different groups. Finally, we investigate the co-occurrence of individual taxa across sites. In each analysis, we assess the contribution of linear or nonlinear environmental effects. •4. We find that a positive correlation between alpha diversity of plants, soil bacteria, soil fungi, soil heterotrophic protists, bees and butterflies is in fact driven by complex nonlinear responses to abiotic drivers. In contrast, environmental variation did not account for positive associations between the diversity of plants and both birds and AM fungi, suggesting a role for biotic interactions. •5. Both the diversity and taxon-level associations between the differing soil groups remained even after accounting for nonlinear environmental gradients. Above-ground, spatial factors played larger roles in driving biotic communities, while linear environmental gradients were sufficient to explain many group- and taxon-level relationships. •6. Synthesis. Our results show how nonlinear responses to environmental gradients drive many of the relationships between plant biodiversity and the biodiversity of above- and below-ground biological communities. Our work shows how different aspects of biodiversity might respond nonlinearly to changing environments and identifies cases where management-induced changes in one community could either influence other taxa or lead to loss of apparent biological associations

    Woodland, cropland and hedgerows promote pollinator abundance in intensive grassland landscapes, with saturating benefits of flower cover

    Get PDF
    1. Pollinating insects provide economic value by improving crop yield. They are also functionally and culturally important across ecosystems outside of cropland. To understand landscape-level drivers of pollinator declines, and guide policy and intervention to reverse declines, studies must cover (a) multiple insect and plant taxa and (b) a range of agricultural and semi-natural land uses. Furthermore, in an era of woodland restoration initiatives and rewilding ideologies, the contribution of woodland and woody linear features (WLFs; e.g. hedgerows) to pollinator abundance demands further investigation. 2. We demonstrate fine-scale analysis of high-quality, co-located measurements from a national environmental survey. We relate pollinator transect counts to ground-truth habitat and WLF maps across 300 1 km squares in Wales, UK. We look at effects of habitat type, flower cover, WLF density and habitat diversity on summer abundance (July and August) of eight insect groups, representing three insect orders (Lepidoptera, Hymenoptera and Diptera). 3. Compared with improved grassland (the dominant habitat in Wales), pollinator abundance is consistently higher in cropland and woodland—especially broadleaved woodland. For mining bees and two hoverfly groups, abundance is predicted to be at least 1.5× higher in woodland ecosystems than elsewhere. Furthermore, we estimate contributions of WLFs to abundance in agriculturally improved habitats to be up to 14% for honeybees and up to 21% for hoverflies. 4. The abundance of all insect groups increases with flower cover, which is a key mechanism through which woodland, cropland and grassland support pollinators. Importantly, we observe diminishing returns of increasing flower cover for abundance of non-Apis pollinator groups, expecting roughly twice the increase in abundance per % flower cover from 0% to 5%, as compared with 10% to 15%. However, the shape of the relationship was inverted for honeybees, which showed steeper increases in abundance at higher flower cover. 4. Synthesis and applications: We provide a holistic view of the drivers of pollinator abundance in Wales, in which flower cover, woodland, hedgerows and cropland are critical. We propose a key role for woodland creation, hedge-laying and farmland heterogeneity within future land management incentive schemes. Finally, we suggest targeting of interventions to maximise benefits for non-Apis pollinators. Specifically, increasing floral provision in areas where existing flower cover is low—for example, in flower-poor improved grasslands—could effectively increase pollinator abundance and diversity while prioritising wild over managed species

    Five decades' experience of long‐term soil monitoring, and key design principles, to assist the EU soil health mission

    Get PDF
    The European Union has a long-term objective to achieve healthy soils by 2050. The European Commission has proposed a Directive of the European Parliament and of the Council on Soil Monitoring and Resilience (Soil Monitoring Law, SML), the first stage of which is to focus on setting up a soil monitoring framework and assessing soils throughout the EU. Situated in NW Europe, the UK has substantial experience in soil monitoring over the last half century which may usefully contribute to this wider EU effort. A set of overarching principles have and continue to guide design of national soil monitoring and may prove helpful as other European countries embark on similar monitoring programmes. Therefore, we present the principles of design from five decades of national soil monitoring. The monitoring discussed is based on a stratified-random design, has matured in support of policy questions, and operates over space and time scales relevant to the SML. The UK Centre for Ecology & Hydrology (UKCEH) Countryside Surveys (CS) of Great Britain and Northern Ireland, Welsh Government, Environment and Rural Affairs Monitoring and Modelling Programme (ERAMMP) and the England Ecosystem Survey (EES) monitoring programme are national programmes currently operating in the UK. Some important lessons learnt include: adopting a question-based approach; having a clear robust statistical design for the purpose; selecting indicators that address policy and underlying scientific questions; and selecting indicators that can detect change and use robust and well-tested methodologies across a wide range of soil and land use types, remaining valid over long time scales, supporting thinking long-term. Technical lessons learned include the proven cost effectiveness of a stratified-random design including replication, while adopting a common stratification layer of stable environmental attributes aids comparability between monitoring programmes. Common protocols are vital for future intercomparisons, but a full ecosystem approach that includes co-located soil and vegetation samples for interpreting a co-evolving system has proved hugely advantageous. UK monitoring programmes offer a range of experience that may prove valuable to future soil monitoring design to address the major societal challenges of our time, such as maintaining food production and addressing climate change and biodiversity loss

    Glastir Monitoring & Evaluation Programme. First year annual report

    Get PDF
    The Welsh Government has commissioned a comprehensive new ecosystem monitoring and evaluation programme to monitor the effects of Glastir, its new land management scheme, and to monitor progress towards a range of international biodiversity and environmental targets. A random sample of 1 km squares stratified by landcover types will be used both to monitor change at a national level in the wider countryside and to provide a backdrop against which intervention measures are assessed using a second sample of 1 km squares located in areas eligible for enhanced payments for advanced interventions. Modelling in the first year has forecast change based on current understanding, whilst a rolling national monitoring programme based on an ecosystem approach will provide an evidence-base for on-going, adaptive development of the scheme by Welsh Government. To our knowledge, this will constitute the largest and most in-depth ecosystem monitoring and evaluation programme of any member state of the European Union
    • …
    corecore