6 research outputs found

    Is there a hormonal regulation of phagocytosis at unicellular and multicellular levels? A critical review

    Get PDF
    Phagocytosis is an ancient cell function, which is similar at unicellular and multicellular levels. Unicells synthesize, store, and secrete multicellular (mammalian) hormones, which influence their phagocytosis. Amino acid hormones, such as histamine, serotonin, epinephrine, and melatonin stimulate phagocytosis, whereas peptide hormones, such as adrenocorticotropic hormone (ACTH), insulin, opioids, arginine vasopressin, and atrial natriuretic peptide decreased it, independently on their chemical structure or function in multicellulars. Macrophage phagocytosis of multicellulars is also stimulated by amino acid hormones, such as histamine, epinephrine, melatonin, and thyroid hormones, however, the effect of peptide hormones is not uniform: prolactin, insulin, glucagon, somatostatin, and leptin have positive effects, whereas ACTH, human chorionic gonadotropin, opioids, and ghrelin have negative ones. Steroid hormones, such as estrogen, hydrocortisone, and dexamethasone are stimulating macrophage phagocytosis, whereas progesterone, aldosterone, and testosterone are depressing it. Considering the data and observations there is not a specific phagocytosis hormone, or a hormonal regulation of phagocytosis neither unicellular, nor multicellular level, however, hormones having specific functions in multicellulars also influence phagocytosis at both levels universally (in unicellulars) or individually (in macrophages). Nevertheless, the hormonal influence cannot be neglected, as phagocytosis (as a function) is rather sensitive to minute dose of hormones and endocrine disruptors. The hormonal influence of phagocytosis by macrophages can be deduced to the events at unicellular level

    Novel 5-aryloxypyrimidine SEN1576 as a candidate for the treatment of Alzheimer's disease

    No full text
    Prefibrillar assembly of amyloid-β (Aβ) is a major event underlying the development of neuropathology and dementia in Alzheimer's disease (AD). This study determined the neuroprotective properties of an orally bioavailable Aβ synaptotoxicity inhibitor, SEN1576. Binding of SEN1576 to monomeric Aβ 1–42 was measured using surface plasmon resonance. Thioflavin-T and MTT assays determined the ability of SEN1576 to block Aβ 1–42-induced aggregation and reduction in cell viability, respectively. In vivo long-term potentiation (LTP) determined effects on synaptic toxicity induced by intracerebroventricular (i.c.v.) injection of cell-derived Aβ oligomers. An operant behavioural schedule measured effects of oral administration following i.c.v. injection of Aβ oligomers in normal rats. SEN1576 bound to monomeric Aβ 1–42, protected neuronal cells exposed to Aβ 1–42, reduced deficits in in vivo LTP and behaviour. SEN1576 exhibits the necessary features of a drug candidate for further development as a disease modifying treatment for the early stages of AD-like dementia

    Orally bioavailable small molecule drug protects memory in Alzheimer's disease models

    No full text
    Oligomers of beta-amyloid (Aβ) are implicated in the early memory impairment seen in Alzheimer's disease before to the onset of discernable neurodegeneration. Here, the capacity of a novel orally bioavailable, central nervous system-penetrating small molecule 5-aryloxypyrimidine, SEN1500, to prevent cell-derived (7PA2 [conditioned medium] CM) Aβ-induced deficits in synaptic plasticity and learned behavior was assessed. Biochemically, SEN1500 bound to Aβ monomer and oligomers, produced a reduction in thioflavin-T fluorescence, and protected a neuronal cell line and primary cortical neurons exposed to synthetic soluble oligomeric Aβ1–42. Electrophysiologically, SEN1500 alleviated the in vitro depression of long-term potentiation induced by both synthetic Aβ1–42 and 7PA2 CM, and alleviated the in vivo depression of long-term potentiation induced by 7PA2 CM, after systemic administration. Behaviorally, oral administration of SEN1500 significantly reduced memory-related deficits in operant responding induced after intracerebroventricular injection of 7PA2 CM. SEN1500 reduced cytotoxicity, acute synaptotoxicity, and behavioral deterioration after in vitro and in vivo exposure to synthetic Aβ and 7PA2 CM, and shows promise for development as a clinically viable disease-modifying Alzheimer's disease treatment
    corecore