9 research outputs found

    Radiolabelling an 18F biologic via facile IEDDA ā€œclickā€ chemistry on the GE FASTLabā„¢ platform

    Get PDF
    The use of biologics in positron emission tomography (PET) imaging is an important area of radiopharmaceutical development and new automated methods are required to facilitate their production. We report an automated radiosynthesis method to produce a radiolabelled biologic via facile inverse electron demand Diels-Alder (IEDDA) ā€œclickā€ chemistry on a single GE FASTLabā„¢ cassette. We exemplified the method by producing a fluorine-18 radiolabelled interleukin-2 (IL2) radioconjugate from a trans-cyclooctene (TCO) modified IL2 precursor. The radioconjugate was produced using a fully automated radiosynthesis on a single FASTLabā„¢ cassette in a radiochemical yield (RCY) of 19.8 Ā± 2.6% in 110 min (from start of synthesis); the molar activity was 132.3 Ā± 14.6 GBq/Ī¼mol. The in vitro uptake of [18F]TTCO-IL2 correlated with the differential receptor expression (CD25, CD122, CD132) in PC3, NK-92 and activated human PBMCs. The automated method may be adapted for the radiosynthesis of any TCO-modified protein via IEDDA chemistry

    The novel choline kinase inhibitor ICL-CCIC-0019 reprograms cellular metabolism and inhibits cancer cell growth

    Get PDF
    The glycerophospholipid phosphatidylcholine is the most abundant phospholipid species of eukaryotic membranes and essential for structural integrity and signaling function of cell membranes required for cancer cell growth. Inhibition of choline kinase alpha (CHKA), the first committed step to phosphatidylcholine synthesis, by the selective small-molecule ICL-CCIC-0019, potently suppressed growth of a panel of 60 cancer cell lines with median GI50 of 1.12 Ī¼M and inhibited tumor xenograft growth in mice. ICL-CCIC-0019 decreased phosphocholine levels and the fraction of labeled choline in lipids, and induced G1 arrest, endoplasmic reticulum stress and apoptosis. Changes in phosphocholine cellular levels following treatment could be detected non-invasively in tumor xenografts by [18F]-fluoromethyl-[1,2ā€“2H4]-choline positron emission tomography. Herein, we reveal a previously unappreciated effect of choline metabolism on mitochondria function. Comparative metabolomics demonstrated that phosphatidylcholine pathway inhibition leads to a metabolically stressed phenotype analogous to mitochondria toxin treatment but without reactive oxygen species activation. Drug treatment decreased mitochondria function with associated reduction of citrate synthase expression and AMPK activation. Glucose and acetate uptake were increased in an attempt to overcome the metabolic stress. This study indicates that choline pathway pharmacological inhibition critically affects the metabolic function of the cell beyond reduced synthesis of phospholipids

    Novel Non-Congeneric Derivatives of the Choline Kinase Alpha Inhibitor ICL-CCIC-0019

    Get PDF
    Choline kinase alpha (CHKA) is a promising target for the development of cancer therapeutics. We have previously reported ICL-CCIC-0019, a potent CHKA inhibitor with high cellular activity but with some unfavorable pharmacological properties. In this work, we present an active analogue of ICL-CCIC-0019 bearing a piperazine handle (CK146) to facilitate further structural elaboration of the pharmacophore and thus improve the biological profile. Two different strategies were evaluated in this study: (1) a prodrug approach whereby selective CHKA inhibition could be achieved through modulating the activity of CK146, via the incorporation of an Īµ-(Ac) Lys motif, cleavable by elevated levels of histone deacetylase (HDAC) and cathepsin L (CTSL) in tumour cells; (2) a prostate-specific membrane antigen (PSMA) receptor targeted delivery strategy. Prodrug (CK145) and PSMA-targeted (CK147) derivatives were successfully synthesized and evaluated in vitro. While the exploitation of CK146 in those two strategies did not deliver the expected results, important and informative structure-activity relationships were observed and have been reported

    Choline metabolism is an early predictor of EGFR-mediated survival in NSCLC

    No full text
    Oncogenic signalling and metabolic reprograming are hallmarks of tumour progression, yet little is known about the regulatory elements that coordinate their interface. Aberrant choline and phospholipid metabolism are strongly correlated to malignant progression in NSCLC and provide the essential components required by both hallmarks and yet mechanistic links to either remain scarce. Choline kinase alpha (ChoKĪ±) regulates the conversion of choline to phosphocholine and although its regulatory cascade has not been described, it is thought to act in conjuction with EGFR. We used an integrated systems approach and queried whether pharmacoproteomic pathway mapping could identify regulators of the cholinic phenotype. Proteomic and phosphoproteomic Stable isotope labelling by amino acids in cell culture (SILAC) analysis was used to describe the interactome following ChoKĪ± or EGFR inhibition. Bioinformatic analysis was used to identify the significant (Significance-B test) subset of targets for each condition. These subsets were clustered according to GeneOntology, Reactome and KEGG databases and the resulting maps identifed the potential regulators of choline metabolism. Choline uptake, phosphorylation and efflux were further evaluated in vitro in response to erlotinib, cisplatin, pemetrexed and paclitaxel using radio-labelled Choline analogues. Derived metabolites were characterised using radio-HPLC. Uptake was further characterised under hypoxic and nutrient deficient conditions. In vivo, [18F]-D4-Choline PET dynamic imaging was performed following treatment. Pharmacoproteomic analysis revealed a 40% overlap between ChoKĪ± and EGFR inhibition providing direct evidence of the pathways and targets involved in, mostly, biosynthesis. Rapid modulation of the cholinic phenotype was directly dependent on ChoKĪ± activity. Intracellular uptake was induced by nutrient deprivation, hypoxia and reversed through second messenger signalling or growth factor stimulation. Choline uptake within 3 hours of treatment correlated to survival at 72 hours. In vivo, [18F]-D4-Choline tracer kinetics were diagnostic of choline kinase expression and sensitive to treatment. Significant correspondence between ChoKĪ± and EGFR inhibition provided mechanistic evidence that ChoKĪ± and lipid metabolism are effectors of the EGFR signalling cascade in NSCLC. Choline can act as a sensor by synchronizing the survival response via metabolic and signalling reprograming and is thus an early predictor of therapeutic efficiency in vitro and in vivo

    Detecting hypoxia in vitro using 18F-pretargeted IEDDA ā€œclickā€ chemistry in live cells

    Get PDF
    We have exemplified a pretargeted approach to interrogate hypoxia in live cells using radioactive bioorthogonal inverse electron demand Dielsā€“Alder (IEDDA) ā€œclickā€ chemistry. Our novel 18F-tetrazine probe ([18F]FB-Tz) and 2-nitroimidazole-based TCO targeting molecule (8) showed statistically significant (P < 0.0001) uptake in hypoxic cells (ca. 90 %ID per mg) vs. normoxic cells (< 10 %ID per mg) in a 60 min incubation of [18F]FB-Tz. This is the first time that an intracellularly targeted small-molecule for IEDDA ā€œclickā€ has been used in conjunction with a radioactive reporter molecule in live cells and may be a useful tool with far-reaching applicability for a variety of applications

    Further Evaluation of the Carbon11-Labeled D-2/3 Agonist PET Radiotracer PHNO: Reproducibility in Tracer Characteristics and Characterization of Extrastriatal Binding

    No full text
    [(11)C]-(+)-PHNO is a new dopamine D(2/3) receptor agonist radiotracer which has been successfully used to measure D(2/3) receptor availability in experimental animals and man. Here we report in vivo evaluation in the rat of the biodistribution, metabolism, specificity, selectivity and dopamine sensitivity of carbon-11 labeled PHNO ([(11)C]-3-PHNO) produced by an alternative radiochemical synthesis method. [(11)C]-3-PHNO showed rapid metabolism and clearance from most peripheral organs and tissues. [(11)C]-3-PHNO, but not its polar metabolite, readily crossed the blood-brain barrier and showed high levels of uptake in the D(2/3) -rich striatum. Pre-treatment with unlabelled PHNO and the D(2/3) receptor antagonist raclopride indicated that binding in the striatum was specific and selective to D(2/3) receptors. PET studies in anaesthetized rats revealed significant reductions in [(11)C]-3-PHNO binding in the striatum following amphetamine administration, indicating sensitivity to increases in endogenous dopamine concentrations. D(2/3) antagonist pre-treatment additionally indicated moderate levels of [(11)C]-3-PHNO specific binding in several extrastriatal brain areas ā€“ most notably the olfactory bulbs and tubercles, thalamus and hypothalamus. Of particular interest, approximately 30% of [(11)C]-3-PHNO signal in the cerebellum ā€“ a region often used as a ā€˜low-bindingā€™ reference region for PET quantification - was attributable to specific signal. These data demonstrate that [(11)C]-3-PHNO shows similar tracer characteristics to [(11)C]-(+)-PHNO, but additionally indicate that radiolabeled PHNO may be used to estimate D(2/3) receptor availability in select extrastriatal brain regions with PET

    Preclinical Evaluation of 3- 18

    No full text
    Deregulated cellular metabolism is a hallmark of many cancers. In addition to increased glycolytic flux, exploited for cancer imaging with 18F-FDG, tumor cells display aberrant lipid metabolism. Pivalic acid is a short-chain, branched carboxylic acid used to increase oral bioavailability of prodrugs. After prodrug hydrolysis, pivalic acid undergoes intracellular metabolism via the fatty acid oxidation pathway. We have designed a new probe, 3-18F-fluoro-2,2-dimethylpropionic acid, also called 18F-fluoro-pivalic acid (18F-FPIA), for the imaging of aberrant lipid metabolism and cancer detection. Methods: Cell intrinsic uptake of 18F-FPIA was measured in murine EMT6 breast adenocarcinoma cells. In vivo dynamic imaging, time course biodistribution, and radiotracer stability testing were performed. 18F-FPIA tumor retention was further compared in vivo to 18F-FDG uptake in several xenograft models and inflammatory tissue. Results: 18F-FPIA rapidly accumulated in EMT6 breast cancer cells, with retention of intracellular radioactivity predicted to occur via a putative 18F-FPIA carnitine-ester. The radiotracer was metabolically stable to degradation in mice. In vivo imaging of implanted EMT6 murine and BT474 human breast adenocarcinoma cells by 18F-FPIA PET showed rapid and extensive tumor localization, reaching 9.1% Ā± 0.5% and 7.6% Ā± 1.2% injected dose/g, respectively, at 60 min after injection. Substantial uptake in the cortex of the kidney was seen, with clearance primarily via urinary excretion. Regarding diagnostic utility, uptake of 18F-FPIA was comparable to that of 18F-FDG in EMT6 tumors but superior in the DU145 human prostate cancer model (54% higher uptake; P = 0.002). Furthermore, compared with 18F-FDG, 18F-FPIA had lower normal-brain uptake resulting in a superior tumor-to-brain ratio (2.5 vs. 1.3 in subcutaneously implanted U87 human glioma tumors; P = 0.001), predicting higher contrast for brain cancer imaging. Both radiotracers showed increased localization in inflammatory tissue. Conclusion: 18F-FPIA shows promise as an imaging agent for cancer detection and warrants further investigation
    corecore