305 research outputs found

    Effect of walking to the operating room on preoperative anxiety in patients scheduled for outpatient laser therapy for venous insufficiency. A monocentric randomized study

    Full text link
    peer reviewedBackground: Preoperative anxiety in day surgery is associated with a higher incidence of postoperative complications such as postoperative nausea and vomiting, pain or unplanned admission. Objectives: To evaluate the effect of walking to the operating room (OR) on anxiety in ambulatory patients undergoing minimal invasive laser therapy for venous insufficiency. Design and setting: Randomized study in a tertiary hospital between May and November 2019. Methods: 100 patients scheduled for ambulatory laser therapy for venous insufficiency were included. Patients were randomized to walk to the OR (study group, n=50) on even weeks or to lie in a bed to the OR (control group, n=50) on odd weeks. Main outcome measures: Baseline anxiety was assessed using the Amsterdam Preoperative Anxiety and Information Scale (APAIS) and Numerical Rating Scale of anxiety (anxiety-NRS) from 0 to 10 when prepared for departure to OR. Preoperative anxiety-NRS assessment was performed upon arrival in the OR. Results: Patients' characteristics were similar in both groups. Baseline anxiety-NRS was significantly lower in the study group than in the control group: 2 (1-3) vs. 4 (2-6.5) (p=.013) respectively. No difference was observed between the groups for preoperative anxiety-NRS. A significant reduction in anxiety-NRS on arrival at the OR was observed in the control group compared with the study group (p=.019). Conclusion: Walking to the OR does not reduce anxiety in ambulatory patients undergoing minimal invasive laser therapy for venous insufficiency. But, preparing them to walk to the OR could possibly reduce baseline anxiety while waiting for surgery

    Comparaison of two levels of laryngeal mask inflation on the occurrence of pharyngeal pain

    Full text link
    peer reviewedAfter the insertion of a laryngeal mask (LM), some patients experience pharyngeal pain. To the best of our knowledge, no studies have investigated a possible correlation between ML inflation pressure and postoperative pharyngeal pain. This study aimed to compare postoperative pharyngeal pain, analgesic requirement, and patients’ satisfaction between two groups of ML inflation pressure

    Influence of level of training on patient's satisfaction and quality of analgesia when performing axillary blockade

    Full text link
    peer reviewedRegional anesthesia requires adequate training. In the early phase of regional anesthesia training, it is expected that the time required for performing a block would be longer and the failure rate would be higher. To the best of our knowledge, this relationship has never been studied before. The purpose of this study was to assess whether the level of training of the anesthesiology resident performing the block impacts the patient’s satisfaction and the success rate of axillary brachial plexus blockade for outpatient hand surgery

    Resting-state Network-specific Breakdown of Functional Connectivity during Ketamine Alteration of Consciousness in Volunteers.

    Get PDF
    BACKGROUND: Consciousness-altering anesthetic agents disturb connectivity between brain regions composing the resting-state consciousness networks (RSNs). The default mode network (DMn), executive control network, salience network (SALn), auditory network, sensorimotor network (SMn), and visual network sustain mentation. Ketamine modifies consciousness differently from other agents, producing psychedelic dreaming and no apparent interaction with the environment. The authors used functional magnetic resonance imaging to explore ketamine-induced changes in RSNs connectivity. METHODS: Fourteen healthy volunteers received stepwise intravenous infusions of ketamine up to loss of responsiveness. Because of agitation, data from six subjects were excluded from analysis. RSNs connectivity was compared between absence of ketamine (wake state [W1]), light ketamine sedation, and ketamine-induced unresponsiveness (deep sedation [S2]). RESULTS: Increasing the depth of ketamine sedation from W1 to S2 altered DMn and SALn connectivity and suppressed the anticorrelated activity between DMn and other brain regions. During S2, DMn connectivity, particularly between the medial prefrontal cortex and the remaining network (effect size β [95% CI]: W1 = 0.20 [0.18 to 0.22]; S2 = 0.07 [0.04 to 0.09]), and DMn anticorrelated activity (e.g., right sensory cortex: W1 = -0.07 [-0.09 to -0.04]; S2 = 0.04 [0.01 to 0.06]) were broken down. SALn connectivity was nonuniformly suppressed (e.g., left parietal operculum: W1 = 0.08 [0.06 to 0.09]; S2 = 0.05 [0.02 to 0.07]). Executive control networks, auditory network, SMn, and visual network were minimally affected. CONCLUSIONS: Ketamine induces specific changes in connectivity within and between RSNs. Breakdown of frontoparietal DMn connectivity and DMn anticorrelation and sensory and SMn connectivity preservation are common to ketamine and propofol-induced alterations of consciousness

    The spectral exponent of the resting EEG indexes the presence of consciousness during unresponsiveness induced by propofol, xenon, and ketamine

    Get PDF
    peer reviewedDespite the absence of responsiveness during anesthesia, conscious experience may persist. However, reliable, easily acquirable and interpretable neurophysiological markers of the presence of consciousness in unresponsive states are still missing. A promising marker is based on the decay-rate of the power spectral density (PSD) of the resting EEG. We acquired resting electroencephalogram (EEG) in three groups of healthy participants (n = 5 each), before and during anesthesia induced by either xenon, propofol or ketamine. Dosage of each anesthetic agent was tailored to yield unresponsiveness (Ramsay score = 6). Delayed subjective reports assessed whether conscious experience was present (‘Conscious report’) or absent/inaccessible to recall (‘No Report’). We estimated the decay of the PSD of the resting EEG—after removing oscillatory peaks—via the spectral exponent β, for a broad band (1–40 Hz) and narrower sub-bands (1–20 Hz, 20–40 Hz). Within-subject anesthetic changes in β were assessed. Furthermore, based on β, ‘Conscious report’ states were discriminated against ‘no report’ states. Finally, we evaluated the correlation of the resting spectral exponent with a recently proposed index of consciousness, the Perturbational Complexity Index (PCI), derived from a previous TMS-EEG study. The spectral exponent of the resting EEG discriminated states in which consciousness was present (wakefulness, ketamine) from states where consciousness was reduced or abolished (xenon, propofol). Loss of consciousness substantially decreased the (negative) broad-band spectral exponent in each subject undergoing xenon or propofol anesthesia—indexing an overall steeper PSD decay. Conversely, ketamine displayed an overall PSD decay similar to that of wakefulness—consistent with the preservation of consciousness—yet it showed a flattening of the decay in the high-frequencies (20–40 Hz)—consistent with its specific mechanism of action. The spectral exponent was highly correlated to PCI, corroborating its interpretation as a marker of the presence of consciousness. A steeper PSD of the resting EEG reliably indexed unconsciousness in anesthesia, beyond sheer unresponsiveness. © 2019 The Author

    Propofol-induced unresponsiveness is associated with impaired feedforward connectivity in cortical hierarchy

    Full text link
    peer reviewedBackground: Impaired consciousness has been associated with impaired cortical signal propagation after transcranial magnetic stimulation (TMS). We hypothesised that the reduced current propagation under propofol-induced unresponsiveness is associated with changes in both feedforward and feedback connectivity across the cortical hierarchy. Methods: Eight subjects underwent left occipital TMS coupled with high-density EEG recordings during wakefulness and propofol-induced unconsciousness. Spectral analysis was applied to responses recorded from sensors overlying six hierarchical cortical sources involved in visual processing. Dynamic causal modelling (DCM) of induced time–frequency responses and evoked response potentials were used to investigate propofol's effects on connectivity between regions. Results: Sensor space analysis demonstrated that propofol reduced both induced and evoked power after TMS in occipital, parietal, and frontal electrodes. Bayesian model selection supported a DCM with hierarchical feedforward and feedback connections. DCM of induced EEG responses revealed that the primary effect of propofol was impaired feedforward responses in cross-frequency theta/alpha–gamma coupling and within frequency theta coupling (F contrast, family-wise error corrected P<0.05). An exploratory analysis (thresholded at uncorrected P<0.001) also suggested that propofol impaired feedforward and feedback beta band coupling. Post hoc analyses showed impairments in all feedforward connections and one feedback connection from parietal to occipital cortex. DCM of the evoked response potential showed impaired feedforward connectivity between left-sided occipital and parietal cortex (T contrast P=0.004, Bonferroni corrected). Conclusions: Propofol-induced loss of consciousness is associated with impaired hierarchical feedforward connectivity assessed by EEG after occipital TMS. © 2018 British Journal of AnaesthesiaARC-06/11-34

    Breakdown of within- and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness.

    Full text link
    BACKGROUND: Mechanisms of anesthesia-induced loss of consciousness remain poorly understood. Resting-state functional magnetic resonance imaging allows investigating whole-brain connectivity changes during pharmacological modulation of the level of consciousness. METHODS: Low-frequency spontaneous blood oxygen level-dependent fluctuations were measured in 19 healthy volunteers during wakefulness, mild sedation, deep sedation with clinical unconsciousness, and subsequent recovery of consciousness. RESULTS: Propofol-induced decrease in consciousness linearly correlates with decreased corticocortical and thalamocortical connectivity in frontoparietal networks (i.e., default- and executive-control networks). Furthermore, during propofol-induced unconsciousness, a negative correlation was identified between thalamic and cortical activity in these networks. Finally, negative correlations between default network and lateral frontoparietal cortices activity, present during wakefulness, decreased proportionally to propofol-induced loss of consciousness. In contrast, connectivity was globally preserved in low-level sensory cortices, (i.e., in auditory and visual networks across sedation stages). This was paired with preserved thalamocortical connectivity in these networks. Rather, waning of consciousness was associated with a loss of cross-modal interactions between visual and auditory networks. CONCLUSIONS: Our results shed light on the functional significance of spontaneous brain activity fluctuations observed in functional magnetic resonance imaging. They suggest that propofol-induced unconsciousness could be linked to a breakdown of cerebral temporal architecture that modifies both within- and between-network connectivity and thus prevents communication between low-level sensory and higher-order frontoparietal cortices, thought to be necessary for perception of external stimuli. They emphasize the importance of thalamocortical connectivity in higher-order cognitive brain networks in the genesis of conscious perception
    corecore